Загрузка страницы

Yekaterina Epshteyn - Multiscale modeling and analysis of grain growth in polycrystalline materials

Recorded 18 April 2023. Yekaterina Epshteyn of the University of Utah presents "New perspectives on multiscale modeling and analysis of grain growth in polycrystalline materials" at IPAM's workshop for Scale-Bridging Materials Modeling at Extreme Computational Scales.
Abstract: Cellular networks are ubiquitous in nature. Most technologically useful materials arise as polycrystalline microstructures, composed of a myriad of small monocrystalline cells or grains, separated by interfaces, or grain boundaries of crystallites with different lattice orientations. A central problem in materials science is to develop technologies capable of producing an arrangement of grains that provides for a desired set of material properties. One method by which the grain structure can be engineered is through grain growth (also termed coarsening) of a starting structure.
The evolution of grain boundaries and associated grain growth is a very complex multiscale and multiphysics process. It involves, for instance, the dynamics of grain boundaries, triple junctions, and the dynamics of lattice misorientations. In general, grain growth can be viewed as the evolution of a large metastable network, and can be mathematically modeled by a set of deterministic local evolution laws for the growth of an individual grain combined with stochastic models to describe the interaction between them. In this talk, we will discuss recent progress in multiscale modeling, simulation, and analysis of the evolution of the grain boundary network in polycrystalline materials.
Learn more online at: http://www.ipam.ucla.edu/programs/workshops/workshop-ii-scale-bridging-materials-modeling-at-extreme-computational-scales/

Видео Yekaterina Epshteyn - Multiscale modeling and analysis of grain growth in polycrystalline materials канала Institute for Pure & Applied Mathematics (IPAM)
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
19 апреля 2023 г. 5:47:54
00:53:05
Другие видео канала
Ewout van den Berg - Quantum error mitigation for observable expectation values and shot countsEwout van den Berg - Quantum error mitigation for observable expectation values and shot countsJustin Smith - The state of neural network interatomic potentials - IPAM at UCLAJustin Smith - The state of neural network interatomic potentials - IPAM at UCLARichard Hennig & Jason Gibson - AI-driven workflows for the discovery of novel superconductorsRichard Hennig & Jason Gibson - AI-driven workflows for the discovery of novel superconductorsJames Corbett - Flux: a next generation resource manager for HPC and beyond - IPAM at UCLAJames Corbett - Flux: a next generation resource manager for HPC and beyond - IPAM at UCLAJuliane Mueller - Adaptive Computing and multi-fidelity learning - IPAM at UCLAJuliane Mueller - Adaptive Computing and multi-fidelity learning - IPAM at UCLAMichele Ceriotti - Machine learning for atomic-scale modeling - potentials and beyond - IPAM at UCLAMichele Ceriotti - Machine learning for atomic-scale modeling - potentials and beyond - IPAM at UCLAAurora Clark - high-dimension perspective on extracting & encoding information in chemical systemsAurora Clark - high-dimension perspective on extracting & encoding information in chemical systemsRalf Drautz - From electrons to the simulation of materials - IPAM at UCLARalf Drautz - From electrons to the simulation of materials - IPAM at UCLAJoshua Schrier - Creating Complex Scientific Workflows that Reach into the Real World - IPAM at UCLAJoshua Schrier - Creating Complex Scientific Workflows that Reach into the Real World - IPAM at UCLASamuel Blau - High-Throughput DFT and Monte Carlo for Reaction Networks and Machine LearningSamuel Blau - High-Throughput DFT and Monte Carlo for Reaction Networks and Machine LearningAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAFrederic Legoll - Parareal algorithms for molecular dynamics simulations - IPAM at UCLAFrederic Legoll - Parareal algorithms for molecular dynamics simulations - IPAM at UCLABoris Kozinsky - Uncertainty-aware machine learning models of many-body atomic interactionsBoris Kozinsky - Uncertainty-aware machine learning models of many-body atomic interactionsThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAJames Kermode - Multiscale and data-driven methods for the simulation of material failureJames Kermode - Multiscale and data-driven methods for the simulation of material failureChristoph Ortner - Atomic Cluster Expansion with and Without Atoms - IPAM at UCLAChristoph Ortner - Atomic Cluster Expansion with and Without Atoms - IPAM at UCLARobert Lipton - Fracture as an emergent phenomenon - IPAM at UCLARobert Lipton - Fracture as an emergent phenomenon - IPAM at UCLAFlorin Bobaru - Peridynamic fracture across scales: large scale computations with fast methodsFlorin Bobaru - Peridynamic fracture across scales: large scale computations with fast methodsXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAGabor Csányi - Machine learning potentials: from polynomials to message passing networksGabor Csányi - Machine learning potentials: from polynomials to message passing networks
Яндекс.Метрика