Загрузка страницы

Robert Nowak - What Kinds of Functions Do Neural Networks Learn?

Presentation given by Robert Nowak on 13th October in the one world seminar on the mathematics of machine learning on the topic "What Kinds of Functions Do Neural Networks Learn?".

Abstract: Neural nets have made an amazing comeback during the past decade. Their empirical success has been truly phenomenal, but neural nets are poorly understood in a mathematical sense compared to classical methods like splines, kernels, and wavelets. This talk describes recent steps towards a mathematical theory of neural networks comparable to the foundations we have for classical nonparametric methods. Surprisingly, neural nets are minimax optimal in a wide variety of classical univariate function spaces, including those handled by splines and wavelets. In multivariate settings, neural nets are solutions to data-fitting problems cast in entirely new types of multivariate function spaces characterized through total variation (TV) measured in the Radon transform domain. Deep multilayer neural nets naturally represent compositions of functions in these Radon-TV spaces. This theory provides novel explanations for many notable empirical discoveries in deep learning and suggests new approaches to training neural networks.

This is joint work with Rahul Parhi.

Видео Robert Nowak - What Kinds of Functions Do Neural Networks Learn? канала One world theoretical machine learning
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
14 октября 2021 г. 15:11:51
00:55:44
Другие видео канала
Lukasz Szpruch - Mean-Field Neural ODEs, Relaxed Control and Generalization ErrorsLukasz Szpruch - Mean-Field Neural ODEs, Relaxed Control and Generalization ErrorsMatthew Colbrook - Smale’s 18th Problem and the Barriers of Deep LearningMatthew Colbrook - Smale’s 18th Problem and the Barriers of Deep LearningMicah Goldblum - Bridging the Gap between Deep Learning Theory and PracticeMicah Goldblum - Bridging the Gap between Deep Learning Theory and PracticeYu Bai - How Important is the Train-Validation Split in Meta-Learning?Yu Bai - How Important is the Train-Validation Split in Meta-Learning?Anna Korba - Kernel Stein Discrepancy DescentAnna Korba - Kernel Stein Discrepancy DescentAnirbit Mukherjee - Provable Training of Neural Nets With One Layer of ActivationAnirbit Mukherjee - Provable Training of Neural Nets With One Layer of ActivationKevin Miller - Ensuring Exploration and Exploitation in Graph-Based Active LearningKevin Miller - Ensuring Exploration and Exploitation in Graph-Based Active LearningTheo Bourdais - Computational Hypergraph Discovery, a Gaussian Process frameworkTheo Bourdais - Computational Hypergraph Discovery, a Gaussian Process frameworkYaoqing Yang - Predicting & improving generalization by measuring loss landscapes & weight matricesYaoqing Yang - Predicting & improving generalization by measuring loss landscapes & weight matricesKonstantinos Spiliopoulos - Mean field limits of neural networks: typical behavior and fluctuationsKonstantinos Spiliopoulos - Mean field limits of neural networks: typical behavior and fluctuationsNadia Drenska - A PDE Interpretation of Prediction with Expert AdviceNadia Drenska - A PDE Interpretation of Prediction with Expert AdviceMatthias Ehrhardt - Bilevel Learning for Inverse ProblemsMatthias Ehrhardt - Bilevel Learning for Inverse ProblemsPeter Richtarik - The Resolution of a Question Related to Local Training in Federated LearningPeter Richtarik - The Resolution of a Question Related to Local Training in Federated LearningMarcus Hutter - Testing Independence of Exchangeable Random VariablesMarcus Hutter - Testing Independence of Exchangeable Random VariablesYury Korolev - Approximation properties of two-layer neural networks with values in a Banach spaceYury Korolev - Approximation properties of two-layer neural networks with values in a Banach spaceSophie Langer - Circumventing the curse of dimensionality with deep neural networksSophie Langer - Circumventing the curse of dimensionality with deep neural networksStephan Mandt - Compressing Variational Bayes: From neural data compression to video predictionStephan Mandt - Compressing Variational Bayes: From neural data compression to video predictionDerek Driggs - Barriers to Deploying Deep Learning Models During the COVID-19 PandemicDerek Driggs - Barriers to Deploying Deep Learning Models During the COVID-19 PandemicGal Vardi - Implications of the implicit bias in neural networksGal Vardi - Implications of the implicit bias in neural networksZiwei Ji - The dual of the margin: improved analyses and rates for gradient descent’s implicit biasZiwei Ji - The dual of the margin: improved analyses and rates for gradient descent’s implicit biasQi Lei - Predicting What You Already Know Helps: Provable Self-Supervised LearningQi Lei - Predicting What You Already Know Helps: Provable Self-Supervised Learning
Яндекс.Метрика