Загрузка страницы

Anna Korba - Kernel Stein Discrepancy Descent

Presentation given by Anna Korba on 20th October in the one world seminar on the mathematics of machine learning on the topic "Kernel Stein Discrepancy Descent".

Abstract: Among dissimilarities between probability distributions, the Kernel Stein Discrepancy (KSD) has received much interest recently. We investigate the properties of its Wasserstein gradient flow to approximate a target probability distribution known up to a normalization constant. This leads to a straightforwardly implementable, deterministic score-based method, named KSD Descent, which uses a set of particles to approximate the target distribution. Remarkably, owing to a tractable loss function, KSD Descent can leverage robust parameter-free optimization schemes such as L-BFGS; this contrasts with other popular particle-based schemes such as the Stein Variational Gradient Descent algorithm. We study the convergence properties of KSD Descent and demonstrate its practical relevance. However, we also highlight failure cases by showing that the algorithm can get stuck in spurious local minima.

Видео Anna Korba - Kernel Stein Discrepancy Descent канала One world theoretical machine learning
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
22 октября 2021 г. 17:27:31
00:51:06
Другие видео канала
Lukasz Szpruch - Mean-Field Neural ODEs, Relaxed Control and Generalization ErrorsLukasz Szpruch - Mean-Field Neural ODEs, Relaxed Control and Generalization ErrorsMatthew Colbrook - Smale’s 18th Problem and the Barriers of Deep LearningMatthew Colbrook - Smale’s 18th Problem and the Barriers of Deep LearningYu Bai - How Important is the Train-Validation Split in Meta-Learning?Yu Bai - How Important is the Train-Validation Split in Meta-Learning?Anirbit Mukherjee - Provable Training of Neural Nets With One Layer of ActivationAnirbit Mukherjee - Provable Training of Neural Nets With One Layer of ActivationKevin Miller - Ensuring Exploration and Exploitation in Graph-Based Active LearningKevin Miller - Ensuring Exploration and Exploitation in Graph-Based Active LearningTheo Bourdais - Computational Hypergraph Discovery, a Gaussian Process frameworkTheo Bourdais - Computational Hypergraph Discovery, a Gaussian Process frameworkYaoqing Yang - Predicting & improving generalization by measuring loss landscapes & weight matricesYaoqing Yang - Predicting & improving generalization by measuring loss landscapes & weight matricesKonstantinos Spiliopoulos - Mean field limits of neural networks: typical behavior and fluctuationsKonstantinos Spiliopoulos - Mean field limits of neural networks: typical behavior and fluctuationsNadia Drenska - A PDE Interpretation of Prediction with Expert AdviceNadia Drenska - A PDE Interpretation of Prediction with Expert AdviceMatthias Ehrhardt - Bilevel Learning for Inverse ProblemsMatthias Ehrhardt - Bilevel Learning for Inverse ProblemsPeter Richtarik - The Resolution of a Question Related to Local Training in Federated LearningPeter Richtarik - The Resolution of a Question Related to Local Training in Federated LearningMarcus Hutter - Testing Independence of Exchangeable Random VariablesMarcus Hutter - Testing Independence of Exchangeable Random VariablesYury Korolev - Approximation properties of two-layer neural networks with values in a Banach spaceYury Korolev - Approximation properties of two-layer neural networks with values in a Banach spaceSophie Langer - Circumventing the curse of dimensionality with deep neural networksSophie Langer - Circumventing the curse of dimensionality with deep neural networksStephan Mandt - Compressing Variational Bayes: From neural data compression to video predictionStephan Mandt - Compressing Variational Bayes: From neural data compression to video predictionDerek Driggs - Barriers to Deploying Deep Learning Models During the COVID-19 PandemicDerek Driggs - Barriers to Deploying Deep Learning Models During the COVID-19 PandemicGal Vardi - Implications of the implicit bias in neural networksGal Vardi - Implications of the implicit bias in neural networksZiwei Ji - The dual of the margin: improved analyses and rates for gradient descent’s implicit biasZiwei Ji - The dual of the margin: improved analyses and rates for gradient descent’s implicit biasQi Lei - Predicting What You Already Know Helps: Provable Self-Supervised LearningQi Lei - Predicting What You Already Know Helps: Provable Self-Supervised LearningAlessandro Scagliotti - Deep Learning Approximation of Diffeomorphisms via Linear-Control SystemsAlessandro Scagliotti - Deep Learning Approximation of Diffeomorphisms via Linear-Control Systems
Яндекс.Метрика