Загрузка страницы

Jeff Calder - Random walks and PDEs in graph-based learning

Presentation given by Jeff Calder on March 24, 2021 in the one world seminar on the mathematics of machine learning on the topic "Random walks and PDEs in graph-based learning".

Abstract: I will discuss some applications of random walks and PDEs in graph-based learning, both for theoretical analysis and algorithm development. Graph-based learning is a field within machine learning that uses similarities between datapoints to create efficient representations of high-dimensional data for tasks like semi-supervised classification, clustering and dimension reduction. There has been considerable interest recently in semi-supervised learning problems with very few labeled examples (e.g., 1 label per class). The widely used Laplacian regularization is ill-posed at low label rates and gives very poor classification results. In the first part of the talk, we will use the random walk interpretation of the graph Laplacian to precisely characterize the lowest label rate at which Laplacian regularized semi-supervised learning is well-posed. At lower label rates, where Laplace learning performs poorly, we will show how our random walk analysis leads to a new algorithm, called Poisson learning, that is probably more stable and informative than Laplace learning. We will conclude with some applications of Poisson learning to image classification and mesh segmentation of broken bone fragments of interest in anthropology.

Видео Jeff Calder - Random walks and PDEs in graph-based learning канала One world theoretical machine learning
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
26 марта 2021 г. 3:20:30
00:51:37
Другие видео канала
Lukasz Szpruch - Mean-Field Neural ODEs, Relaxed Control and Generalization ErrorsLukasz Szpruch - Mean-Field Neural ODEs, Relaxed Control and Generalization ErrorsMatthew Colbrook - Smale’s 18th Problem and the Barriers of Deep LearningMatthew Colbrook - Smale’s 18th Problem and the Barriers of Deep LearningYu Bai - How Important is the Train-Validation Split in Meta-Learning?Yu Bai - How Important is the Train-Validation Split in Meta-Learning?Anna Korba - Kernel Stein Discrepancy DescentAnna Korba - Kernel Stein Discrepancy DescentAnirbit Mukherjee - Provable Training of Neural Nets With One Layer of ActivationAnirbit Mukherjee - Provable Training of Neural Nets With One Layer of ActivationKevin Miller - Ensuring Exploration and Exploitation in Graph-Based Active LearningKevin Miller - Ensuring Exploration and Exploitation in Graph-Based Active LearningTheo Bourdais - Computational Hypergraph Discovery, a Gaussian Process frameworkTheo Bourdais - Computational Hypergraph Discovery, a Gaussian Process frameworkYaoqing Yang - Predicting & improving generalization by measuring loss landscapes & weight matricesYaoqing Yang - Predicting & improving generalization by measuring loss landscapes & weight matricesHao Ni - Path development network for sequential data analysisHao Ni - Path development network for sequential data analysisKonstantinos Spiliopoulos - Mean field limits of neural networks: typical behavior and fluctuationsKonstantinos Spiliopoulos - Mean field limits of neural networks: typical behavior and fluctuationsNadia Drenska - A PDE Interpretation of Prediction with Expert AdviceNadia Drenska - A PDE Interpretation of Prediction with Expert AdviceMatthias Ehrhardt - Bilevel Learning for Inverse ProblemsMatthias Ehrhardt - Bilevel Learning for Inverse ProblemsPeter Richtarik - The Resolution of a Question Related to Local Training in Federated LearningPeter Richtarik - The Resolution of a Question Related to Local Training in Federated LearningMarcus Hutter - Testing Independence of Exchangeable Random VariablesMarcus Hutter - Testing Independence of Exchangeable Random VariablesYury Korolev - Approximation properties of two-layer neural networks with values in a Banach spaceYury Korolev - Approximation properties of two-layer neural networks with values in a Banach spaceSophie Langer - Circumventing the curse of dimensionality with deep neural networksSophie Langer - Circumventing the curse of dimensionality with deep neural networksStephan Mandt - Compressing Variational Bayes: From neural data compression to video predictionStephan Mandt - Compressing Variational Bayes: From neural data compression to video predictionDerek Driggs - Barriers to Deploying Deep Learning Models During the COVID-19 PandemicDerek Driggs - Barriers to Deploying Deep Learning Models During the COVID-19 PandemicGal Vardi - Implications of the implicit bias in neural networksGal Vardi - Implications of the implicit bias in neural networksZiwei Ji - The dual of the margin: improved analyses and rates for gradient descent’s implicit biasZiwei Ji - The dual of the margin: improved analyses and rates for gradient descent’s implicit biasQi Lei - Predicting What You Already Know Helps: Provable Self-Supervised LearningQi Lei - Predicting What You Already Know Helps: Provable Self-Supervised Learning
Яндекс.Метрика