Загрузка страницы

Laurent Dinh: "A primer on normalizing flows"

Machine Learning for Physics and the Physics of Learning 2019
Workshop I: From Passive to Active: Generative and Reinforcement Learning with Physics

"A primer on normalizing flows"
Laurent Dinh, Google

Abstract: Normalizing flows are a flexible family of probability distributions that can serve as generative models for a variety of data modalities. Because flows can be expressed as compositions of expressive functions, they have successfully harnessed recent advances in deep learning. An ongoing challenge in developing these methods is the definition of expressive yet tractable building blocks. In this talk, I will introduce the fundamentals and describe recent work (including my own) on this topic.

Institute for Pure and Applied Mathematics, UCLA
September 23, 2019

For more information: http://www.ipam.ucla.edu/mlpws1

Видео Laurent Dinh: "A primer on normalizing flows" канала Institute for Pure & Applied Mathematics (IPAM)
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
10 октября 2019 г. 2:26:42
00:26:19
Другие видео канала
Jaafar El-Awady - dislocation in high thermomechanical condition in Additive Manufacturing of AlloysJaafar El-Awady - dislocation in high thermomechanical condition in Additive Manufacturing of AlloysVikram Gavini - Fast, Accurate and Large-scale Ab-initio Calculations for Materials ModelingVikram Gavini - Fast, Accurate and Large-scale Ab-initio Calculations for Materials ModelingBistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLABistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAEran Rabani - Stochastic Density Functional Theory - IPAM at UCLAEran Rabani - Stochastic Density Functional Theory - IPAM at UCLADeanna Needell - Using Algebraic Factorizations for Interpretable Learning - IPAM at UCLADeanna Needell - Using Algebraic Factorizations for Interpretable Learning - IPAM at UCLAXavier Bresson - Learning to Untangle Genome Assembly Graphs - IPAM at UCLAXavier Bresson - Learning to Untangle Genome Assembly Graphs - IPAM at UCLAJack Gilbert: "Microbiome of the Built Environment"Jack Gilbert: "Microbiome of the Built Environment"John Harrison - Formalization and Automated Reasoning: A Personal and Historical PerspectiveJohn Harrison - Formalization and Automated Reasoning: A Personal and Historical PerspectiveRaymond Clay - Machine Learning in Equation of State and Transport Modeling at Extreme ConditionsRaymond Clay - Machine Learning in Equation of State and Transport Modeling at Extreme ConditionsRose Yu - Incorporating Symmetry for Learning Spatiotemporal Dynamics - IPAM at UCLARose Yu - Incorporating Symmetry for Learning Spatiotemporal Dynamics - IPAM at UCLAYongsoo Yang - Neural network-assisted atomic electron tomography - IPAM at UCLAYongsoo Yang - Neural network-assisted atomic electron tomography - IPAM at UCLAMargaret Murnane - Attosecond Quantum Technologies for Advanced Materials Metrologies - IPAM at UCLAMargaret Murnane - Attosecond Quantum Technologies for Advanced Materials Metrologies - IPAM at UCLAAlbert Fannjiang - From Tomographic Phase Retrieval to Projection Tomography - IPAM at UCLAAlbert Fannjiang - From Tomographic Phase Retrieval to Projection Tomography - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAKevin Kelly - Machine Learning Enhanced Compressive Hyperspectral Imaging - IPAM at UCLAKevin Kelly - Machine Learning Enhanced Compressive Hyperspectral Imaging - IPAM at UCLADemetri Psaltis - Machine Learning for 3D Optical Imaging - IPAM at UCLADemetri Psaltis - Machine Learning for 3D Optical Imaging - IPAM at UCLAPaola Gori-Giorgi - Large-coupling strength expansion in DFT and Hartree-Fock adiabatic connectionsPaola Gori-Giorgi - Large-coupling strength expansion in DFT and Hartree-Fock adiabatic connectionsBohua Zhan - Verifying symbolic computation in the HolPy theorem prover - IPAM at UCLABohua Zhan - Verifying symbolic computation in the HolPy theorem prover - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAPascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLAPascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLA
Яндекс.Метрика