Загрузка страницы

Margaret Murnane - Attosecond Quantum Technologies for Advanced Materials Metrologies - IPAM at UCLA

Recorded 13 October 2022. Margaret Murnane of the University of Colorado, Boulder, presents "Attosecond Quantum Technologies for Advanced Materials Metrologies" at IPAM's Diffractive Imaging with Phase Retrieval Workshop.
Abstract: Next-generation nano and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical, interfacial or dopant composition. Characterizing their structural and functional properties is challenging, requiring real-time, high-fidelity probes that can image relatively large areas.
High harmonic quantum light sources provide an exquisite source of short wavelength light, with unprecedented control over the spectral, temporal, polarization and orbital angular momentum of the emitted waveforms, from the UV to the keV photon energy region. These advances are providing powerful new tools for near-perfect x-ray imaging, for coherently manipulating quantum materials using light, and for extracting the functional transport, electronic, magnetic and mechanical properties of ultrathin films and nanosystems.
Learn more online at: http://www.ipam.ucla.edu/programs/workshops/workshop-i-diffractive-imaging-with-phase-retrieval/?tab=schedule

Видео Margaret Murnane - Attosecond Quantum Technologies for Advanced Materials Metrologies - IPAM at UCLA канала Institute for Pure & Applied Mathematics (IPAM)
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
15 октября 2022 г. 1:39:07
00:37:49
Другие видео канала
Jaafar El-Awady - dislocation in high thermomechanical condition in Additive Manufacturing of AlloysJaafar El-Awady - dislocation in high thermomechanical condition in Additive Manufacturing of AlloysVikram Gavini - Fast, Accurate and Large-scale Ab-initio Calculations for Materials ModelingVikram Gavini - Fast, Accurate and Large-scale Ab-initio Calculations for Materials ModelingBistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLABistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAEran Rabani - Stochastic Density Functional Theory - IPAM at UCLAEran Rabani - Stochastic Density Functional Theory - IPAM at UCLADeanna Needell - Using Algebraic Factorizations for Interpretable Learning - IPAM at UCLADeanna Needell - Using Algebraic Factorizations for Interpretable Learning - IPAM at UCLAXavier Bresson - Learning to Untangle Genome Assembly Graphs - IPAM at UCLAXavier Bresson - Learning to Untangle Genome Assembly Graphs - IPAM at UCLAJack Gilbert: "Microbiome of the Built Environment"Jack Gilbert: "Microbiome of the Built Environment"John Harrison - Formalization and Automated Reasoning: A Personal and Historical PerspectiveJohn Harrison - Formalization and Automated Reasoning: A Personal and Historical PerspectiveRaymond Clay - Machine Learning in Equation of State and Transport Modeling at Extreme ConditionsRaymond Clay - Machine Learning in Equation of State and Transport Modeling at Extreme ConditionsRose Yu - Incorporating Symmetry for Learning Spatiotemporal Dynamics - IPAM at UCLARose Yu - Incorporating Symmetry for Learning Spatiotemporal Dynamics - IPAM at UCLAYongsoo Yang - Neural network-assisted atomic electron tomography - IPAM at UCLAYongsoo Yang - Neural network-assisted atomic electron tomography - IPAM at UCLAAlbert Fannjiang - From Tomographic Phase Retrieval to Projection Tomography - IPAM at UCLAAlbert Fannjiang - From Tomographic Phase Retrieval to Projection Tomography - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAKevin Kelly - Machine Learning Enhanced Compressive Hyperspectral Imaging - IPAM at UCLAKevin Kelly - Machine Learning Enhanced Compressive Hyperspectral Imaging - IPAM at UCLADemetri Psaltis - Machine Learning for 3D Optical Imaging - IPAM at UCLADemetri Psaltis - Machine Learning for 3D Optical Imaging - IPAM at UCLAPaola Gori-Giorgi - Large-coupling strength expansion in DFT and Hartree-Fock adiabatic connectionsPaola Gori-Giorgi - Large-coupling strength expansion in DFT and Hartree-Fock adiabatic connectionsBohua Zhan - Verifying symbolic computation in the HolPy theorem prover - IPAM at UCLABohua Zhan - Verifying symbolic computation in the HolPy theorem prover - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAPascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLAPascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLA
Яндекс.Метрика