Загрузка страницы

Jaafar El-Awady - dislocation in high thermomechanical condition in Additive Manufacturing of Alloys

Recorded 28 March 2023. Jaafar El-Awady of Johns Hopkins University presents "Modeling the evolution of representative dislocation structures under high thermo-mechanical conditions during Additive Manufacturing of Alloys" at IPAM's Increasing the Length, Time, and Accuracy of Materials Modeling Using Exascale Computing workshop.
Abstract: Mesoscale simulations of discrete defects in metals provide an ideal framework to investigate the micro-scale mechanisms governing the plastic deformation under high thermal and mechanical loading conditions. To bridge size and time-scale while limiting computational effort, typically the concept of representative volume elements (RVEs) is employed. This approach considers the microstructure evolution in a volume that is representative of the overall material behavior. However, in settings with complex thermal and mechanical loading histories careful consideration of the impact of modeling constraints in terms of time scale and simulation domain on predicted results is required. We address the representation of heterogeneous dislocation structure formation in simulation volumes using the example of residual stress formation during cool-down of laser powder-bed fusion (LPBF) of AISI 316L stainless steel. This is achieved by a series of large-scale three-dimensional discrete dislocation dynamics (DDD) simulations assisted by thermo-mechanical finite element modeling of the LPBF process. Our results show that insufficient size of periodic simulation domains can result in dislocation patterns that reflect the boundaries of the primary cell. More pronounced dislocation interaction observed for larger domains highlight the significance of simulation domain constraints for predicting mechanical properties. We formulate criteria that characterize representative volume elements by capturing the conformity of the dislocation structure to the bulk material. This work provides a basis for future investigations of heterogeneous microstructure formation in mesoscale simulations of bulk material behavior.
Learn more online at: http://www.ipam.ucla.edu/programs/workshops/workshop-i-increasing-the-length-time-and-accuracy-of-materials-modeling-using-exascale-computing/

Видео Jaafar El-Awady - dislocation in high thermomechanical condition in Additive Manufacturing of Alloys канала Institute for Pure & Applied Mathematics (IPAM)
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
29 марта 2023 г. 23:23:55
01:02:36
Другие видео канала
Vikram Gavini - Fast, Accurate and Large-scale Ab-initio Calculations for Materials ModelingVikram Gavini - Fast, Accurate and Large-scale Ab-initio Calculations for Materials ModelingBistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLABistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAAmit Acharya - Slow time-scale behavior of fast microscopic dynamics - IPAM at UCLAEran Rabani - Stochastic Density Functional Theory - IPAM at UCLAEran Rabani - Stochastic Density Functional Theory - IPAM at UCLADeanna Needell - Using Algebraic Factorizations for Interpretable Learning - IPAM at UCLADeanna Needell - Using Algebraic Factorizations for Interpretable Learning - IPAM at UCLAXavier Bresson - Learning to Untangle Genome Assembly Graphs - IPAM at UCLAXavier Bresson - Learning to Untangle Genome Assembly Graphs - IPAM at UCLAJack Gilbert: "Microbiome of the Built Environment"Jack Gilbert: "Microbiome of the Built Environment"John Harrison - Formalization and Automated Reasoning: A Personal and Historical PerspectiveJohn Harrison - Formalization and Automated Reasoning: A Personal and Historical PerspectiveRaymond Clay - Machine Learning in Equation of State and Transport Modeling at Extreme ConditionsRaymond Clay - Machine Learning in Equation of State and Transport Modeling at Extreme ConditionsRose Yu - Incorporating Symmetry for Learning Spatiotemporal Dynamics - IPAM at UCLARose Yu - Incorporating Symmetry for Learning Spatiotemporal Dynamics - IPAM at UCLAYongsoo Yang - Neural network-assisted atomic electron tomography - IPAM at UCLAYongsoo Yang - Neural network-assisted atomic electron tomography - IPAM at UCLAMargaret Murnane - Attosecond Quantum Technologies for Advanced Materials Metrologies - IPAM at UCLAMargaret Murnane - Attosecond Quantum Technologies for Advanced Materials Metrologies - IPAM at UCLAAlbert Fannjiang - From Tomographic Phase Retrieval to Projection Tomography - IPAM at UCLAAlbert Fannjiang - From Tomographic Phase Retrieval to Projection Tomography - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAThomas Swinburne - Learning uncertainty-aware models of defect kinetics at scale - IPAM at UCLAKevin Kelly - Machine Learning Enhanced Compressive Hyperspectral Imaging - IPAM at UCLAKevin Kelly - Machine Learning Enhanced Compressive Hyperspectral Imaging - IPAM at UCLADemetri Psaltis - Machine Learning for 3D Optical Imaging - IPAM at UCLADemetri Psaltis - Machine Learning for 3D Optical Imaging - IPAM at UCLAPaola Gori-Giorgi - Large-coupling strength expansion in DFT and Hartree-Fock adiabatic connectionsPaola Gori-Giorgi - Large-coupling strength expansion in DFT and Hartree-Fock adiabatic connectionsBohua Zhan - Verifying symbolic computation in the HolPy theorem prover - IPAM at UCLABohua Zhan - Verifying symbolic computation in the HolPy theorem prover - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAXiantao Li - A stochastic algorithm for self-consistent calculations in DFT - IPAM at UCLAPascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLAPascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLA
Яндекс.Метрика