Загрузка страницы

Deep Reinforcement Learning with Gait Mode Specification for Quadrupedal Trot-Gallop Energetic Study

[EMBC21] Deep Reinforcement Learning with Gait Mode Specification

for Quadrupedal Trot-Gallop Energetic Analysis
http://neuro.mech.tohoku.ac.jp/​
Neuro-Robotics Lab, Tohoku University
Quadruped system is an animal-like model which has long been analyzed in terms of energy efficiency during its various gait locomotion. The generation of certain gait modes on these systems has been achieved by classical controllers which demand highly specific domain-knowledge and careful
engineering. In this paper, we propose to use deep reinforcement learning (DRL) as an alternative approach to generate certain gait modes on quadrupeds, allowing potentially the same energetic analysis without the difficulty of designing an ad hoc controller. We show that by specifying a gait mode in the process of learning, it allows faster convergence of the learning process while at the same time imposing a certain gait type on the systems as opposed to the case without any gait specification.
We demonstrate the advantages of using DRL as it can exploit automatically the physical condition of the robots such as the passive spring effect between the joints during the learning process, similar to the adaptation skills of an animal. The proposed system would provide a framework for quadrupedal trot-gallop energetic analysis for different body structures, body
mass distributions and joint characteristics using DRL.

Видео Deep Reinforcement Learning with Gait Mode Specification for Quadrupedal Trot-Gallop Energetic Study канала Neuro-Robotics Lab
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
12 марта 2021 г. 8:43:09
00:00:34
Другие видео канала
Tower of Hanoi (Occupational Therapy Task) with Microsoft Hololens 2Tower of Hanoi (Occupational Therapy Task) with Microsoft Hololens 2ニューロロボティクス、東北大学 学祭模擬講義 2021ニューロロボティクス、東北大学 学祭模擬講義 2021Towards Robust Wheel-Legged Biped Robot System: Combining Feedforward and Feedback ControlTowards Robust Wheel-Legged Biped Robot System: Combining Feedforward and Feedback Control[EMBC2020] Personalized Fall Risk Estimation with Kinect Two[EMBC2020] Personalized Fall Risk Estimation with Kinect TwoIndividual deformability compensation of soft hydraulic actuators through iterative learningIndividual deformability compensation of soft hydraulic actuators through iterative learning[EMBC21] Deep Reinforcement Learning with Gait Mode Specification for Trot-Gallop Analysis[EMBC21] Deep Reinforcement Learning with Gait Mode Specification for Trot-Gallop AnalysisAI-CPG: Adaptive Imitated Central Pattern GeneratorsAI-CPG: Adaptive Imitated Central Pattern GeneratorsMotor Synergy Development in Symmetric Gait ofWhole-body Locomotion Learning (ICRA2023 video)Motor Synergy Development in Symmetric Gait ofWhole-body Locomotion Learning (ICRA2023 video)[ICRA2020] Discovering Interpretable Dynamics by Sparsity Promotion on Energy and the Lagrangian[ICRA2020] Discovering Interpretable Dynamics by Sparsity Promotion on Energy and the Lagrangian反復学習制御によるFiber-Reinforced Soft Actuatorの個体差補償反復学習制御によるFiber-Reinforced Soft Actuatorの個体差補償Synergetic synchronized oscillation by distributed neural integratorsSynergetic synchronized oscillation by distributed neural integratorsJoint Elasticity Produces Energy Efficiency in Underwater LocomotionJoint Elasticity Produces Energy Efficiency in Underwater LocomotionSpiking Neural Network Discovers Energy-Efficient Hexapod Motion in Deep Reinforcement LearningSpiking Neural Network Discovers Energy-Efficient Hexapod Motion in Deep Reinforcement Learning[ICRA2020 video] Motor Synergy Development in High-performing Deep Reinforcement Learning algorithms[ICRA2020 video] Motor Synergy Development in High-performing Deep Reinforcement Learning algorithms[EMBC2011] Joint Angle Estimation with Inertial Sensors and its Integration with Kinect[EMBC2011] Joint Angle Estimation with Inertial Sensors and its Integration with Kinect[EMBC2012] Real-time Simulation of Volumetric Muscle Deformation with EMG signals[EMBC2012] Real-time Simulation of Volumetric Muscle Deformation with EMG signals[ICRA21] Deep Reinforcement Learning Framework for Underwater Locomotion of Soft Robot[ICRA21] Deep Reinforcement Learning Framework for Underwater Locomotion of Soft RobotSynergetic Learning Control Paradigm for Redundant Robot to Enhance Error-Energy IndexSynergetic Learning Control Paradigm for Redundant Robot to Enhance Error-Energy IndexElectromyographically Controlled Snake RobotElectromyographically Controlled Snake RobotSelf-Organizing Neural Network for Reproducing Human Postural Mode Alternation through LearningSelf-Organizing Neural Network for Reproducing Human Postural Mode Alternation through LearningSimultaneous On-line Motion Discrimination and Evaluation of Whole-body Exercise by Synergy ProbesSimultaneous On-line Motion Discrimination and Evaluation of Whole-body Exercise by Synergy Probes
Яндекс.Метрика