Загрузка страницы

Adapting Rapid Motor Adaptation for Bipedal Robots

Recent advances in legged locomotion have enabled quadrupeds to walk on challenging terrains. However, bipedal robots are inherently more unstable and hence it's harder to design walking controllers for them. In this work, we leverage recent advances in rapid adaptation for locomotion control, and extend them to work on bipedal robots. Similar to existing works, we start with a base policy which produces actions while taking as input an estimated extrinsics vector from an adaptation module. This extrinsics vector contains information about the environment and enables the walking controller to rapidly adapt online. However, the extrinsics estimator could be imperfect, which might lead to poor performance of the base policy which expects a perfect estimator. In this work, we propose A-RMA (Adapting RMA), which additionally adapts the base policy for the imperfect extrinsics estimator by finetuning it using model-free RL. We demonstrate that A-RMA outperforms a number of RL-based baseline controllers and model-based controllers in simulation, and show zero-shot deployment of a single A-RMA policy to enable a bipedal robot, Cassie, to walk in a variety of different scenarios in the real world beyond what it has seen during training.

Paper: https://arxiv.org/abs/2205.15299
Webpage: https://ashish-kmr.github.io/a-rma/

Видео Adapting Rapid Motor Adaptation for Bipedal Robots канала Hybrid Robotics
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
31 мая 2022 г. 9:21:48
00:01:22
Другие видео канала
Safety-Critical Geometric Control for Systems on ManifoldsSafety-Critical Geometric Control for Systems on ManifoldsRule-Based Safety-Critical Control Design using CBFs with Application to Autonomous Lane ChangeRule-Based Safety-Critical Control Design using CBFs with Application to Autonomous Lane Change400m dash - RL for Versatile, Dynamic, and Robust Bipedal Locomotion Control400m dash - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Walking Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Walking Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlOptimal Robust Safety-Critical Control for Dynamic RoboticsOptimal Robust Safety-Critical Control for Dynamic RoboticsHierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal RobotHierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal RobotDynamic Legged Manipulation of a Ball through Multi-Contact OptimizationDynamic Legged Manipulation of a Ball through Multi-Contact OptimizationDynamic Walking on Stepping Stones with Gait Library and Control Barrier FunctionsDynamic Walking on Stepping Stones with Gait Library and Control Barrier FunctionsGaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with UncertaintyGaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with UncertaintyDeep Visual Perception for Dynamic Walking on Discrete TerrainDeep Visual Perception for Dynamic Walking on Discrete TerrainSupplementary Running Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Running Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewCompetitive Car Racing with Multiple VehiclesCompetitive Car Racing with Multiple VehiclesReinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion ControlReinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSafe Teleoperation of Dynamic UAVs through Control Barrier FunctionsSafe Teleoperation of Dynamic UAVs through Control Barrier FunctionsGeometric L1 Adaptive Attitude Control for Quadrotor UAVGeometric L1 Adaptive Attitude Control for Quadrotor UAVMotion Planning and Feedback Control for Bipedal Robots riding a SnakeboardMotion Planning and Feedback Control for Bipedal Robots riding a Snakeboard3D Dynamic Walking on Stepping Stones with Control Barrier Functions3D Dynamic Walking on Stepping Stones with Control Barrier FunctionsRobust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement LearningRobust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement LearningDifferential Flatness based Direct Collocation for a Quadrotor with a Cable-Suspended PayloadDifferential Flatness based Direct Collocation for a Quadrotor with a Cable-Suspended Payload
Яндекс.Метрика