Загрузка страницы

Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal Robot

We address the problem of enabling quadrupedal robots to perform precise shooting skills in the real world using reinforcement learning. Developing algorithms to enable a legged robot to shoot a soccer ball to a given target is a challenging problem that combines robot motion control and planning into one task. To solve this problem, we need to consider the dynamics limitation and motion stability during the control of a dynamic legged robot.
Moreover, we need to consider motion planning to shoot the hard-to-model deformable ball rolling on the ground with uncertain friction to a desired location. In this work, we propose a hierarchical framework that leverages deep reinforcement learning to train (a) a robust motion control policy that can track arbitrary motions and (b) a planning policy to decide the desired kicking motion to shoot a soccer ball to a target. We deploy the proposed framework on an A1 quadrupedal robot and enable it to accurately shoot the ball to random targets in the real world.

Видео Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal Robot канала Hybrid Robotics
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
2 августа 2022 г. 22:38:58
00:02:27
Другие видео канала
Safety-Critical Geometric Control for Systems on ManifoldsSafety-Critical Geometric Control for Systems on ManifoldsRule-Based Safety-Critical Control Design using CBFs with Application to Autonomous Lane ChangeRule-Based Safety-Critical Control Design using CBFs with Application to Autonomous Lane Change400m dash - RL for Versatile, Dynamic, and Robust Bipedal Locomotion Control400m dash - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Walking Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Walking Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlOptimal Robust Safety-Critical Control for Dynamic RoboticsOptimal Robust Safety-Critical Control for Dynamic RoboticsDynamic Legged Manipulation of a Ball through Multi-Contact OptimizationDynamic Legged Manipulation of a Ball through Multi-Contact OptimizationDynamic Walking on Stepping Stones with Gait Library and Control Barrier FunctionsDynamic Walking on Stepping Stones with Gait Library and Control Barrier FunctionsGaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with UncertaintyGaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with UncertaintyDeep Visual Perception for Dynamic Walking on Discrete TerrainDeep Visual Perception for Dynamic Walking on Discrete TerrainSupplementary Running Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Running Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewCompetitive Car Racing with Multiple VehiclesCompetitive Car Racing with Multiple VehiclesReinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion ControlReinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSafe Teleoperation of Dynamic UAVs through Control Barrier FunctionsSafe Teleoperation of Dynamic UAVs through Control Barrier FunctionsGeometric L1 Adaptive Attitude Control for Quadrotor UAVGeometric L1 Adaptive Attitude Control for Quadrotor UAVMotion Planning and Feedback Control for Bipedal Robots riding a SnakeboardMotion Planning and Feedback Control for Bipedal Robots riding a Snakeboard3D Dynamic Walking on Stepping Stones with Control Barrier Functions3D Dynamic Walking on Stepping Stones with Control Barrier FunctionsRobust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement LearningRobust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement LearningDifferential Flatness based Direct Collocation for a Quadrotor with a Cable-Suspended PayloadDifferential Flatness based Direct Collocation for a Quadrotor with a Cable-Suspended Payload
Яндекс.Метрика