Загрузка...

Q-Learning Agent Analysis - Reinforcement Learning p.3

Welcome to part 3 of the Reinforcement Learning series as well as part 3 of the Q learning parts. Up to this point, we've successfully made a Q-learning algorithm that navigates the OpenAI MountainCar environment. The issue now is, we have a lot of parameters here that we might want to tune. Being able to beat the game is one thing, but we might want to beat it quicker, and maybe even try to explore ways to learn faster. In order to do this, we need to start shedding some light onto what exactly we're doing.

Text-based tutorial and sample code: https://pythonprogramming.net/q-learning-analysis-reinforcement-learning-python-tutorial/

Channel membership: https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ/join
Discord: https://discord.gg/sentdex
Support the content: https://pythonprogramming.net/support-donate/
Twitter: https://twitter.com/sentdex
Instagram: https://instagram.com/sentdex
Facebook: https://www.facebook.com/pythonprogramming.net/
Twitch: https://www.twitch.tv/sentdex

#reinforcementlearning #machinelearning #python

Видео Q-Learning Agent Analysis - Reinforcement Learning p.3 канала sentdex
Яндекс.Метрика
Все заметки Новая заметка Страницу в заметки
Страницу в закладки Мои закладки
На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.
О CookiesНапомнить позжеПринять