- Популярные видео
- Авто
- Видео-блоги
- ДТП, аварии
- Для маленьких
- Еда, напитки
- Животные
- Закон и право
- Знаменитости
- Игры
- Искусство
- Комедии
- Красота, мода
- Кулинария, рецепты
- Люди
- Мото
- Музыка
- Мультфильмы
- Наука, технологии
- Новости
- Образование
- Политика
- Праздники
- Приколы
- Природа
- Происшествия
- Путешествия
- Развлечения
- Ржач
- Семья
- Сериалы
- Спорт
- Стиль жизни
- ТВ передачи
- Танцы
- Технологии
- Товары
- Ужасы
- Фильмы
- Шоу-бизнес
- Юмор
Optimizing Neural Network Structures with Keras-Tuner
Tuning and optimizing neural networks with the Keras-Tuner package: https://keras-team.github.io/keras-tuner/
Kite AI autocomplete for Python download: https://kite.com/download/?utm_medium=referral&utm_source=youtube&utm_campaign=sentdex&utm_content=keras-tuner
Text-based tutorial and sample code: https://pythonprogramming.net/keras-tuner-optimizing-neural-network-tutorial/
Starting model:
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Activation
model = keras.models.Sequential()
model.add(Conv2D(32, (3, 3), input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=64, epochs=1, validation_data = (x_test, y_test))
Channel membership: https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ/join
Discord: https://discord.gg/sentdex
Support the content: https://pythonprogramming.net/support-donate/
Twitter: https://twitter.com/sentdex
Instagram: https://instagram.com/sentdex
Facebook: https://www.facebook.com/pythonprogramming.net/
Twitch: https://www.twitch.tv/sentdex
#deeplearning #tutorial #keras
Видео Optimizing Neural Network Structures with Keras-Tuner канала sentdex
Kite AI autocomplete for Python download: https://kite.com/download/?utm_medium=referral&utm_source=youtube&utm_campaign=sentdex&utm_content=keras-tuner
Text-based tutorial and sample code: https://pythonprogramming.net/keras-tuner-optimizing-neural-network-tutorial/
Starting model:
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Activation
model = keras.models.Sequential()
model.add(Conv2D(32, (3, 3), input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=64, epochs=1, validation_data = (x_test, y_test))
Channel membership: https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ/join
Discord: https://discord.gg/sentdex
Support the content: https://pythonprogramming.net/support-donate/
Twitter: https://twitter.com/sentdex
Instagram: https://instagram.com/sentdex
Facebook: https://www.facebook.com/pythonprogramming.net/
Twitch: https://www.twitch.tv/sentdex
#deeplearning #tutorial #keras
Видео Optimizing Neural Network Structures with Keras-Tuner канала sentdex
Комментарии отсутствуют
Информация о видео
21 декабря 2019 г. 20:01:42
00:28:26
Другие видео канала