Загрузка страницы

Learning Torque Control for Quadrupedal Locomotion

Reinforcement learning (RL) has become a promising approach to developing controllers for quadrupedal robots. Conventionally, an RL design for locomotion follows a position-based paradigm, wherein an RL policy outputs target joint positions at a low frequency that are then tracked by a high-frequency proportional-derivative (PD) controller to produce joint torques. In contrast, for the model-based control of quadrupedal locomotion, there has been a paradigm shift from position-based control to torque-based control. In light of the recent advances in model-based control, we explore an alternative to the position-based RL paradigm, by introducing a torque-based RL framework, where an RL policy directly predicts joint torques at a high frequency, thus circumventing the use of a PD controller. The proposed learning torque control framework is validated with extensive experiments, in which a quadruped is capable of traversing various terrain and resisting external disturbances while following user-specified commands. Furthermore, compared to learning position control, learning torque control demonstrates the potential to achieve a higher reward and is more robust to significant external disturbances. To our knowledge, this is the first sim-to-real attempt for end-to-end learning torque control of quadrupedal locomotion.

Видео Learning Torque Control for Quadrupedal Locomotion канала Hybrid Robotics
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
15 марта 2023 г. 5:47:44
00:01:41
Другие видео канала
Safety-Critical Geometric Control for Systems on ManifoldsSafety-Critical Geometric Control for Systems on ManifoldsRule-Based Safety-Critical Control Design using CBFs with Application to Autonomous Lane ChangeRule-Based Safety-Critical Control Design using CBFs with Application to Autonomous Lane Change400m dash - RL for Versatile, Dynamic, and Robust Bipedal Locomotion Control400m dash - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Walking Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Walking Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlOptimal Robust Safety-Critical Control for Dynamic RoboticsOptimal Robust Safety-Critical Control for Dynamic RoboticsHierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal RobotHierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal RobotDynamic Legged Manipulation of a Ball through Multi-Contact OptimizationDynamic Legged Manipulation of a Ball through Multi-Contact OptimizationDynamic Walking on Stepping Stones with Gait Library and Control Barrier FunctionsDynamic Walking on Stepping Stones with Gait Library and Control Barrier FunctionsGaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with UncertaintyGaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with UncertaintyDeep Visual Perception for Dynamic Walking on Discrete TerrainDeep Visual Perception for Dynamic Walking on Discrete TerrainSupplementary Running Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSupplementary Running Experiments - RL for Versatile, Dynamic, and Robust Bipedal Locomotion ControlDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewDynamic Walking on Randomly-Varying Discrete Terrain with One-step PreviewCompetitive Car Racing with Multiple VehiclesCompetitive Car Racing with Multiple VehiclesReinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion ControlReinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion ControlSafe Teleoperation of Dynamic UAVs through Control Barrier FunctionsSafe Teleoperation of Dynamic UAVs through Control Barrier FunctionsGeometric L1 Adaptive Attitude Control for Quadrotor UAVGeometric L1 Adaptive Attitude Control for Quadrotor UAVMotion Planning and Feedback Control for Bipedal Robots riding a SnakeboardMotion Planning and Feedback Control for Bipedal Robots riding a Snakeboard3D Dynamic Walking on Stepping Stones with Control Barrier Functions3D Dynamic Walking on Stepping Stones with Control Barrier FunctionsRobust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement LearningRobust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement LearningDifferential Flatness based Direct Collocation for a Quadrotor with a Cable-Suspended PayloadDifferential Flatness based Direct Collocation for a Quadrotor with a Cable-Suspended Payload
Яндекс.Метрика