Загрузка...

How Diffusion LLM Generates Tokens - Code Explained

How Diffusion LLM Generates Tokens - Code Explained

Github - https://github.com/OpenMOSS/LongLLaDA/tree/main

- How LLaDA generates text by refining [MASK] tokens over several steps.
- The structure of inputs: prompt + [MASK] tokens to be filled.
- How the model chooses the most confident predictions at each step.
- Why it uses softmax + Gumbel noise for stochastic sampling.
- How gradual top-k selection improves quality over greedy decoding.
Code DeepSeek V3 From Scratch Full Course - https://www.youtube.com/watch?v=TfEG0TwueTs&list=PL-9_KFQd8ssI_-_lNLXNRIUavVgPW5Kgr&index=7

support me on patreon - https://www.patreon.com/vukrosic/membership

contact: vukrosic1@gmail.com

If you wish to fund my research, contact me via email.

0:00 - How Diffusion LLMs Predict Tokens
0:25 - The Iterative Refinement Process
1:21 - Calculating Token Probabilities
2:11 - Adding Randomness to Predictions
3:39 - Keeping High-Confidence Tokens
5:00 - Code Overview: Ladder Generate
6:23 - Denoising Example: "The Cat Sat..."
8:05 - Step 1: Generating Logits
10:09 - Step 2: Sampling with Gumbel Noise
12:11 - Step 3: Calculating Confidence with torch.gather
18:05 - Low-Confidence Re-masking Strategy
21:26 - Block-by-Block Generation
25:03 - Updating Only Masked Tokens
29:53 - The Full Refinement Loop
33:34 - The Token Transfer Schedule

Видео How Diffusion LLM Generates Tokens - Code Explained канала Vuk Rosić
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять