Загрузка...

The maximum value off(x)=|■(sin^2⁡x&1+cos^2⁡x&cos⁡2x@1+sin^2⁡x&cos^2⁡x&cos⁡2x@sin^2⁡x&cos^2⁡x&sin⁡2x

#jee #jee_pyq
The maximum value of
f(x)=|■(sin^2⁡x&1+cos^2⁡x&cos⁡2x@1+sin^2⁡x&cos^2⁡x&cos⁡2x@sin^2⁡x&cos^2⁡x&sin⁡2x )|,x∈R is,
(a) √5 (b) 5 (c) √7 (d) 3/4
Ans: a
Sol.
C_1+C_2→C_1
|■(2&1+cos^2⁡x&cos⁡2x@2&cos^2⁡x&cos⁡2x@1&cos^2⁡x&sin⁡2x )|
R_1-R_2→R_1
|■(0&1&0@2&cos^2⁡x&cos⁡2x@1&cos^2⁡x&cos⁡2x )|
Open w.r.t. R_1
-(2 sin⁡〖2x-cos⁡2x 〗 )
cos⁡〖2x-2 sin⁡2x 〗=f(x)
├ f(x)┤|_max=√(1+4)=√5

Downloads our APP for FREE Study Material ,Video Class ,Test paper & Mock test etc...
Click to Download Impetus Gurukul Free Learning App here
https://play.google.com/store/apps/details?id=com.impetusgurukul
To buy complete Course please Visit–
https://www.impetusgurukul.com or contact on 7047832474
join Impetus Gurukul live classes via the official Website:
https://live.impetusgurukul.com

Our Social links
Telegram: https://t.me/impetusgurukul
Facebook: https://www.facebook.com/impetusgurukul
LinkedIn: https://www.linkedin.com/in/dr-sharad...
twitter: https://twitter.com/ImpetusSharad

Видео The maximum value off(x)=|■(sin^2⁡x&1+cos^2⁡x&cos⁡2x@1+sin^2⁡x&cos^2⁡x&cos⁡2x@sin^2⁡x&cos^2⁡x&sin⁡2x канала Math Master - Impetus Gurukul
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки