Загрузка...

lim┬(x→0)⁡ (x cot⁡ (4x))/sin^2⁡ x cot^2⁡ (2x) is equal to | lim┬(x→π/4)⁡ cot^3⁡ x-tan⁡x /cos⁡(x+π/4)

#jee_maths #jee_pyq #jeepyq #jeemains #jeepapersolution #jeepaperanalysis ,
lim┬(x→0)⁡〖(x cot⁡〖(4x)〗)/sin^2⁡〖x cot^2⁡〖(2x)〗 〗 〗 is equal to
(a) 0 (b) 2 (c) 4 (d) 1
Ans: d
Sol.
Here,
lim┬(x→0)⁡〖(x cot⁡〖(4x)〗)/sin^2⁡〖x cot^2⁡〖(2x)〗 〗 〗=lim┬(x→0)⁡〖(x tan^2⁡2x)/tan⁡〖4x sin^2⁡x 〗 〗
=lim┬(x→0)⁡〖(x(tan^2⁡2x/(4x^2 ))4x^2)/((tan⁡4x/4x)4x(sin^2⁡x/x^2 ) x^2 )〗=1

lim┬(x→π/4)⁡〖cot^3⁡〖x-tan⁡x 〗/cos⁡(x+π/4) 〗 is
(a) 4√2 (b) 8√2
(c) 4 (d) 8
Ans: d
Sol.
lim┬(x→π/4)⁡〖cot^3⁡〖x-tan⁡x 〗/cos⁡(x+π/4) 〗
=lim┬(x→π/4)⁡〖(1-tan^4⁡x)/cos⁡(x+π/4) 〗=2 lim┬(x→π/4)⁡〖(1-tan^2⁡x)/cos⁡(x+π/4) 〗
=2 lim┬(x→π/4)⁡〖cos^2⁡〖x-sin^2⁡x 〗/(1/√2 (cos⁡〖x-sin⁡x 〗 ) )〗∙1/cos^2⁡x
=4√2 lim┬(x→π/4)⁡〖(cos⁡〖x+sin⁡x 〗 〗)=8
---------------------------
lim┬(x→π/4)⁡〖cot^3⁡〖x-tan⁡x 〗/cos⁡(x+π/4) 〗 is
(a) 4√2 (b) 8√2
(c) 4 (d) 8
Ans: d
Sol.
lim┬(x→π/4)⁡〖cot^3⁡〖x-tan⁡x 〗/cos⁡(x+π/4) 〗
=lim┬(x→π/4)⁡〖(1-tan^4⁡x)/cos⁡(x+π/4) 〗=2 lim┬(x→π/4)⁡〖(1-tan^2⁡x)/cos⁡(x+π/4) 〗
=2 lim┬(x→π/4)⁡〖cos^2⁡〖x-sin^2⁡x 〗/(1/√2 (cos⁡〖x-sin⁡x 〗 ) )〗∙1/cos^2⁡x
=4√2 lim┬(x→π/4)⁡〖(cos⁡〖x+sin⁡x 〗 〗)=8
Downloads our APP for FREE Study Material ,Video Class ,Test paper & Mock test etc...
Click to Download Impetus Gurukul Free Learning App here
https://play.google.com/store/apps/details?id=com.impetusgurukul
To buy complete Course please Visit–
https://www.impetusgurukul.com or contact on 7047832474
join Impetus Gurukul live classes via the official Website:
https://live.impetusgurukul.com

Our Social links
Telegram: https://t.me/impetusgurukul
Facebook: https://www.facebook.com/impetusgurukul
LinkedIn: https://www.linkedin.com/in/dr-sharad...
twitter: https://twitter.com/ImpetusSharad

Видео lim┬(x→0)⁡ (x cot⁡ (4x))/sin^2⁡ x cot^2⁡ (2x) is equal to | lim┬(x→π/4)⁡ cot^3⁡ x-tan⁡x /cos⁡(x+π/4) канала Math Master - Impetus Gurukul
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки