Загрузка страницы

Jane Bae - Wall-models of turbulent flows via scientific multi-agent reinforcement learning

Prof. Jane Bae from Caltech speaking in the UW Data-driven methods in science and engineering seminar on Nov. 12, 2021.

Sign up for notifications of future talks: https://mailman11.u.washington.edu/mailman/listinfo/datadriven-seminar

Abstract: The predictive capabilities of turbulent flow simulations, critical for aerodynamic design and weather prediction, hinge on the choice of turbulence models. The abundance of data from experiments and simulations and the advent of machine learning have provided a boost to turbulence modeling efforts. However, simulations of turbulent flows remain hindered by the inability of heuristics and supervised learning to model the near-wall dynamics. We address this challenge by introducing scientific multi-agent reinforcement learning (SciMARL) for the discovery of wall models for large-eddy simulations (LES). In SciMARL, discretization points act also as cooperating agents that learn to supply the LES closure model. The agents self-learn using limited data and generalize to higher Reynolds numbers in reproducing key flow quantities.

Видео Jane Bae - Wall-models of turbulent flows via scientific multi-agent reinforcement learning канала Physics Informed Machine Learning
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
18 ноября 2021 г. 2:29:04
00:56:05
Другие видео канала
Benjamin Peherstorfer - Physics-based machine learning for quickly simulating transport-dominated...Benjamin Peherstorfer - Physics-based machine learning for quickly simulating transport-dominated...Aditya Nair/Floris van Breugel - Leveraging Machine Learning for interaction-based models and controAditya Nair/Floris van Breugel - Leveraging Machine Learning for interaction-based models and controMelanie Weber - Exploiting Geometric Structure in Machine Learning and OptimizationMelanie Weber - Exploiting Geometric Structure in Machine Learning and OptimizationNa Li - Scalable and Safe Learning-based Decision-Making in Dynamical SystemsNa Li - Scalable and Safe Learning-based Decision-Making in Dynamical SystemsAlex Gorodetsky - Scalable Learning of Dynamical SystemsAlex Gorodetsky - Scalable Learning of Dynamical SystemsRose Yu - Incorporating Symmetry for Learning Spatiotemporal DynamicsRose Yu - Incorporating Symmetry for Learning Spatiotemporal DynamicsHod Lipson - The AI Scientist Automating Discovery, From Cognitive Robotics to Computational BiologyHod Lipson - The AI Scientist Automating Discovery, From Cognitive Robotics to Computational BiologySteve Brunton - Discovering interpretable and generalizable dynamical systems from dataSteve Brunton - Discovering interpretable and generalizable dynamical systems from dataKathleen Champion - Data-driven discovery of coordinates and governing equationsKathleen Champion - Data-driven discovery of coordinates and governing equationsKevin Carlberg - Breaking Komolgorov-Width Barriers using Deep LearningKevin Carlberg - Breaking Komolgorov-Width Barriers using Deep LearningDavid Bortz - The Surprising Robustness and Computational Efficiency of Weak Form System Identif...David Bortz - The Surprising Robustness and Computational Efficiency of Weak Form System Identif...John Wright - Deep Networks and the Multiple Manifold ProblemJohn Wright - Deep Networks and the Multiple Manifold ProblemDominique Zosso - Graph-Based Geometric Data AnalysisDominique Zosso - Graph-Based Geometric Data AnalysisLaure Zanna - Data-driven turbulence closures for ocean and climate models: advances and challengesLaure Zanna - Data-driven turbulence closures for ocean and climate models: advances and challengesBenjamin Peherstorfer - Data generation for learning reduced models with operator inferenceBenjamin Peherstorfer - Data generation for learning reduced models with operator inferenceAndrea Bertozzi - Total Variation Minimization on Graphs for Semisupervised and Unsupervised MLAndrea Bertozzi - Total Variation Minimization on Graphs for Semisupervised and Unsupervised MLAndrew Stuart - Supervised Learning For OperatorsAndrew Stuart - Supervised Learning For OperatorsKrithika Manohar - Optimal Sensors for Empowering AIKrithika Manohar - Optimal Sensors for Empowering AIJörn Dunkel - Symmetry-informed model inference for active matterJörn Dunkel - Symmetry-informed model inference for active matterAleksandr Aravkin - Algorithms for Nonsmooth, Nonconvex Problems in Data-Driven DiscoveryAleksandr Aravkin - Algorithms for Nonsmooth, Nonconvex Problems in Data-Driven Discovery
Яндекс.Метрика