Загрузка страницы

Pieter Abbeel: Deep Learning for Robotics (NIPS 2017 Keynote)

Abstract:
Computer scientists are increasingly concerned about the many ways that machine learning can reproduce and reinforce forms of bias. When ML systems are incorporated into core social institutions, like healthcare, criminal justice and education, issues of bias and discrimination can be extremely serious. But what can be done about it? Part of the trouble with bias in machine learning in high-stakes decision making is that it can be the result of one or many factors: the training data, the model, the system goals, and whether the system works less well for some populations, among several others. Given the difficulty of understanding how a machine learning system produced a particular result, bias is often discovered after a system has been producing unfair results in the wild. But there is another problem as well: the definition of bias changes significantly depending on your discipline, and there are exciting approaches from other fields that have not yet been included by computer science. This talk will look at the recent literature on bias in machine learning, consider how we can incorporate approaches from the social sciences, and offer new strategies to address bias.

Bio:
Pieter Abbeel (Associate Professor at UC Berkeley, Research Scientist at OpenAI, Co-Founder Gradescope) works in machine learning and robotics, in particular his research is on making robots learn from people (apprenticeship learning) and how to make robots learn through their own trial and error (Reinforcement learning). His robots have learned advanced helicopter aerobatics, knottying, basic assembly, and organizing laundry. His group has pioneered deep Reinforcement learning for robotics, including learning visuomotor skills and simulated locomotion. He has won various awards, including best paper awards at ICML, NIPS and ICRA, the Sloan Fellowship, the Air Force Office of Scientific Research Young Investigator Program (AFOSR-YIP) award, the Office of Naval Research Young Investigator Program (ONR-YIP) award, the DARPA Young Faculty Award (DARPAYFA), the National Science Foundation Faculty Early Career Development Program Award (NSF-CAREER), the Presidential Early Career Award for Scientists and Engineers (PECASE), the CRA-E Undergraduate Research Faculty Mentoring Award, the MIT TR35, the IEEE Robotics and Automation Society (RAS) Early Career Award, and the Dick Volz Best U.S. Ph.D. Thesis in Robotics and Automation Award.

Видео Pieter Abbeel: Deep Learning for Robotics (NIPS 2017 Keynote) канала Steven Van Vaerenbergh
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
18 декабря 2017 г. 14:07:12
00:51:09
Яндекс.Метрика