Загрузка страницы

Visual Group Theory, Lecture 4.2: Kernels

Visual Group Theory, Lecture 4.2: Kernels The kernel of a homomorphism is the set of elements that get mapped to the identity. We show that it is always a normal subgroup of the domain, and that the preimages of the other elements are its cosets. This means that we can always quotient out by the kernel, and this key observation leads us to the fundamental homomorphism theorem. We concluding with two visual examples: one using multiplication tables, and the other using Cayley diagrams. Course webpage (with lecture notes, HW, etc.): http://www.math.clemson.edu/~macaule/math4120-online.html

Видео Visual Group Theory, Lecture 4.2: Kernels автора Уравнение Радости
Показать
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки