Synthetic People Flow: Privacy-Preserving Mob. Modeling from Large-Scale Location Data in Urb. Areas
Synthetic People Flow: Privacy-Preserving Mobility Modeling from Large-Scale Location Data in Urban Areas
---
Authors: Amura, Naoki (Nagoya University); Urano, Kenta (Nagoya University); Aoki, Shunsuke (National Institute of Informatics); Yonezawa, Takuro (Nagoya University); Kawaguchi, Nobuo (Nagoya University)
---
18th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
---
https://mobiquitous.eai-conferences.org/2021/
https://eai.eu/
#MobiQuitous2021
#eai #conference #convention
Видео Synthetic People Flow: Privacy-Preserving Mob. Modeling from Large-Scale Location Data in Urb. Areas канала EAI
---
Authors: Amura, Naoki (Nagoya University); Urano, Kenta (Nagoya University); Aoki, Shunsuke (National Institute of Informatics); Yonezawa, Takuro (Nagoya University); Kawaguchi, Nobuo (Nagoya University)
---
18th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
---
https://mobiquitous.eai-conferences.org/2021/
https://eai.eu/
#MobiQuitous2021
#eai #conference #convention
Видео Synthetic People Flow: Privacy-Preserving Mob. Modeling from Large-Scale Location Data in Urb. Areas канала EAI
Комментарии отсутствуют
Информация о видео
10 февраля 2022 г. 20:10:57
00:15:03
Другие видео канала



















