- Популярные видео
- Авто
- Видео-блоги
- ДТП, аварии
- Для маленьких
- Еда, напитки
- Животные
- Закон и право
- Знаменитости
- Игры
- Искусство
- Комедии
- Красота, мода
- Кулинария, рецепты
- Люди
- Мото
- Музыка
- Мультфильмы
- Наука, технологии
- Новости
- Образование
- Политика
- Праздники
- Приколы
- Природа
- Происшествия
- Путешествия
- Развлечения
- Ржач
- Семья
- Сериалы
- Спорт
- Стиль жизни
- ТВ передачи
- Танцы
- Технологии
- Товары
- Ужасы
- Фильмы
- Шоу-бизнес
- Юмор
Pattern Recognition Lab 1
# Pattern Recognition Lab - MFCC Feature Analysis | Python Implementation
📘 In this video, I explain a Python implementation for pattern recognition using MFCC (Mel-frequency cepstral coefficients) features.
### Key Points Covered:
- Implementation of Euclidean distance calculation
- MFCC file reading and organization
- Pattern recognition with feature vectors
- Intra-class distance calculation
- Output formatting and result analysis
### Code Components:
- 🔍 File organization and class separation
- 📊 Distance calculation between feature vectors
- 💻 Error calculation and averaging
- 📋 Tabular result presentation
### Technical Details:
- Language: Python
- Libraries: os, math
- Input: MFCC feature files (.mfc)
- Output: Class-wise pattern analysis
### Use Cases:
- Speech Recognition
- Pattern Classification
- Feature Analysis
- Acoustic Model Evaluation
### Time Stamps:
00:00 - Introduction
02:00 - Code Structure Explanation
05:00 - MFCC File Reading
08:00 - Distance Calculation
12:00 - Pattern Recognition Logic
15:00 - Result Analysis
18:00 - Conclusion
#PatternRecognition #Python #MFCC #MachineLearning #SpeechProcessing #Programming
💡 Don't forget to like, subscribe, and share if you found this helpful!
🔔 Turn on notifications for more programming tutorials!
Feel free to comment with questions or suggestions for future videos.
Видео Pattern Recognition Lab 1 канала Ahsan Ullah
📘 In this video, I explain a Python implementation for pattern recognition using MFCC (Mel-frequency cepstral coefficients) features.
### Key Points Covered:
- Implementation of Euclidean distance calculation
- MFCC file reading and organization
- Pattern recognition with feature vectors
- Intra-class distance calculation
- Output formatting and result analysis
### Code Components:
- 🔍 File organization and class separation
- 📊 Distance calculation between feature vectors
- 💻 Error calculation and averaging
- 📋 Tabular result presentation
### Technical Details:
- Language: Python
- Libraries: os, math
- Input: MFCC feature files (.mfc)
- Output: Class-wise pattern analysis
### Use Cases:
- Speech Recognition
- Pattern Classification
- Feature Analysis
- Acoustic Model Evaluation
### Time Stamps:
00:00 - Introduction
02:00 - Code Structure Explanation
05:00 - MFCC File Reading
08:00 - Distance Calculation
12:00 - Pattern Recognition Logic
15:00 - Result Analysis
18:00 - Conclusion
#PatternRecognition #Python #MFCC #MachineLearning #SpeechProcessing #Programming
💡 Don't forget to like, subscribe, and share if you found this helpful!
🔔 Turn on notifications for more programming tutorials!
Feel free to comment with questions or suggestions for future videos.
Видео Pattern Recognition Lab 1 канала Ahsan Ullah
Комментарии отсутствуют
Информация о видео
24 сентября 2025 г. 13:41:03
00:27:11
Другие видео канала