Загрузка...

2.1.3-Theorem(a) If a=0 & b in R such that a•b≠1 then b = 1/a. (b) If a•b=0, then either a=0 or b=0.

Now you will Learn Complete Course of Real Analysis-1 (by Robert G bartle) from Máthçlàssroom
Lecture#3
2.1.3 -Theorem
(a) If a≠0 and b in R are such that
a•b= 1, then b = 1/a.
(b) If a•b=0, then either a = 0 or b = 0.
Lecture #2
https://youtu.be/-wcdbTNuE3Q
Topic:
Theorem 2.1.2
(a) If z and a are elements in R with
z+a=a then z =0
(b) If u and b≠0 are elements in with • u.b= b then u=1.
(c) If a∈R then a•0=0.
By Máthçlàssroom
Lecture #1
https://youtu.be/zRfx5DlKz5w
Chapter #2
The Real Numbers
Topic#1
The Algebraic Properties of Real Number
• Addition properties
• Multiplication properties
@ For complete playlist of Functional analysis
https://youtube.com/playlist?list=PLPsAxzIAHeTjM01OB3REHlzmhHh5vIbJ_
For complete playlist of Ring Theory
https://youtube.com/playlist?list=PLPsAxzIAHeTiX7KMaSGulkKyfYLQqylL-

Hope so you will understand completely if you have any questions then comment below if you like the video then like subscribe 👍 and Share🔥

Видео 2.1.3-Theorem(a) If a=0 & b in R such that a•b≠1 then b = 1/a. (b) If a•b=0, then either a=0 or b=0. канала Mathclassroom
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки