Mathematical Art: Ai: Radial Pattern
Explore the beauty of mathematics with this 3D visualization of the function:
Formula: f(x,y) = \frac{\operatorname{arctan}_{2}{\left(x,y \right)} \sqrt{\left|{x y}\right|}}{\sqrt{x^{2} + y^{2} + 0.1}} - \frac{\sin{\left(x y \right)}}{\left|{x - y}\right| + 1.1}
Python/NumPy Expression: f(x,y) = np.arctan2(x, y) * np.sqrt(np.abs(x*y)) / (np.sqrt(x**2 + y**2 + 0.1)) - np.sin(x*y) / (1 + np.abs(x - y) + 0.1)
Domain: x ∈ [-5, 5], y ∈ [-5, 5]
Category: Hiperbolica
Generated using Python with Matplotlib and SymPy.
#MathArt #MathematicalVisualization #3D #Python #Matplotlib #SymPy #hiperbolica
Видео Mathematical Art: Ai: Radial Pattern канала Stunning Revelations
Formula: f(x,y) = \frac{\operatorname{arctan}_{2}{\left(x,y \right)} \sqrt{\left|{x y}\right|}}{\sqrt{x^{2} + y^{2} + 0.1}} - \frac{\sin{\left(x y \right)}}{\left|{x - y}\right| + 1.1}
Python/NumPy Expression: f(x,y) = np.arctan2(x, y) * np.sqrt(np.abs(x*y)) / (np.sqrt(x**2 + y**2 + 0.1)) - np.sin(x*y) / (1 + np.abs(x - y) + 0.1)
Domain: x ∈ [-5, 5], y ∈ [-5, 5]
Category: Hiperbolica
Generated using Python with Matplotlib and SymPy.
#MathArt #MathematicalVisualization #3D #Python #Matplotlib #SymPy #hiperbolica
Видео Mathematical Art: Ai: Radial Pattern канала Stunning Revelations
Комментарии отсутствуют
Информация о видео
27 апреля 2025 г. 17:57:14
00:00:16
Другие видео канала
![d/dx [2cos(x)] = -2sin(xy)](https://i.ytimg.com/vi/wO1hffa1v24/default.jpg)



















