Загрузка страницы

On the surface of liquids

Why does a jet of water break into droplets? How do you make perfectly spherical droplets? We’re talking surface tension in this first video in our studio! Come back to us next year in early January for our first interview!
↓ More infos and links in the description! ↓

----------------------------------------­-----------------------------
LINKS:

French version: https://youtu.be/UKtz9VdYPDc
Subscribe to the channel : https://youtube.com/thelutetiumproject
Follow us on Twitter : https://twitter.com/TheLuProject
Visit our website: https://www.lutetium.paris/en
----------------------------------------­-----------------------------
RELATED ARTICLES :
Pierre-Gilles de Gennes, Françoise Brochard-Wyart & David Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer (2004) http://www.springer.com/us/book/9780387005928

Christophe Clanet, Cours de mécanique des fluides, ESPCI Paris

Antonin Marchand, Joost H. Weijs, Jacco H. Snoeijer & Bruno Andreotti, Why is surface tension a force parallel to the interface? American Journal of Physics, 79, 999 (2011) http://aapt.scitation.org/doi/10.1119/1.3619866

Michael V. Berry, The molecular mechanism of surface tension, Physics Education 79, 79 (1971) http://iopscience.iop.org/article/10.1088/0031-9120/6/2/001/

Joseph Plateau, Mémoire sur les phénomènes que présente une masse liquide et soustraite à l’action de la pesanteur, Nouveaux mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 16, 1 (1843) https://books.google.fr/books?id=b1kTAAAAQAAJ&pg=PA3&lpg=PA3&ots=ynxnWosqjK&sig=kqVt9-duwGPRYqU3G6UkrawWfbU&hl=fr&sa=X&ved=0ahUKEwilm4L619zQAhWGECwKHYUTDjEQ6AEIMTAG#v=onepage

Masahiro I. Kohira, Yuko Hayashima, Masaharu Nagayama & Satoshi Nakata, Synchronized self-motion of two camphor boats, Langmuir 17, 7124 (2001) http://pubs.acs.org/doi/abs/10.1021/la010388r

----------------------------------------­-----------------------------
STRUCTURE OF THE VIDEO:

00:00 The surface tension of liquids
01:30 Gravity versus surface tension
02:09 Plateau droplets
02:42 Rayleigh-Plateau instability
03:15 Why surface "tension"?
05:00 Surfactants and Marangoni flows
07:03 Conclusion

----------------------------------------­-----------------------------
CREDITS:

Host:
Julie Godefroid

Director, editor, animator:
Hoon Kwon

Script:
Quentin Magdelaine, Guillaume Durey

Science supervisor:
Marc Fermigier

Studio, visual identity:
Juliette Nier

Theme music, background music:
Pierre David

Production:
Guillaume Durey, Mathias Kasiulis
----------------------------------------­-----------------------------
FOOTAGE:

Liquid Ping Pong in Space, NASA Ultra High Definition https://www.youtube.com/watch?v=TLbhrMCM4_0

Plateau’s experiment was conducted with the team from the MOOC « interfacial hydrodynamics » by PSL: Lucie Domino, Martin Coux, Marc Fermigier
----------------------------------------­-----------------------------
ACKNOWLEDGMENTS:

Team MécaWet, PMMH laboratory, for the DSLR camera https://www.pmmh.espci.fr/~jbico/Research_en.html/

Team Effets Collectifs et Matière Molle, Gulliver laboratory, for the high-speed camera https://www.ec2m.espci.fr/

Ramiro Godoy-Diana, PMMH laboratory, for the searchlights https://blog.espci.fr/ramiro/

Emmanuel Fort's lab, Langevin Institute, for the ThorLabs https://blog.espci.fr/efort/
----------------------------------------­-----------------------------

The Lutetium Project is a PSL students’ initiative conducted as part of IDEX ANR-10-IDEX-0001-02 PSL and funded by:
PSL Research University – https://www.univ-psl.fr
ESPCI Paris – https://www.espci.fr
Espace des sciences Pierre-Gilles de Gennes – https://www.espgg.org
ESPCI Alumni – https://espci.alumni.paris
----------------------------------------­-----------------------------
ERRATA:

A group of agitated molecules in a disordered state is the definition of a fluid phase, meaning that it applies both to liquids and gases. A more precise definition of liquids would be the following: a dense group of agitated molecules in a disordered state, where the intermolecular distance is of the same order of magnitude as the molecular size.

Carlo Marangoni is not actually the first to study the so-called "Marangoni flows". James Thomson explained correctly these flows for the first time in 1855, and some works could even date back to 1686. Source: L. E. Scriven & C.V. Sternling, The Marangoni Effects, Nature, 187, 186 (1960) https://www.nature.com/articles/187186a0

----------------------------------------­-----------------------------

Видео On the surface of liquids канала The Lutetium Project
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
7 декабря 2016 г. 14:35:09
00:07:45
Яндекс.Метрика