Загрузка...

Computational Complexity || Decision Tree || ID3 || CART

Computational Complexity of Decision Tree Algorithms | Machine Learning Explained

In this video, we break down the computational complexity of decision tree algorithms—a core concept in machine learning and data science. Whether you're preparing for exams, brushing up for interviews, or just exploring AI, understanding how decision trees scale with data is essential.

🔍 Topics Covered:

What is a decision tree?

Time complexity of training vs prediction

Factors affecting complexity: number of features, samples, and tree depth

Complexity of popular algorithms like ID3, C4.5, CART

Optimizations and trade-offs

Real-world implications and performance tips

🧮 Key Concepts:

Training complexity: O(n·m·log n) to O(n²·m) depending on implementation

Prediction time: O(depth of the tree)

Pruning and feature selection impact

Why decision trees can be both powerful and computationally expensive

📌 Whether you're using scikit-learn, XGBoost, or building your own models from scratch, this video gives you the theoretical and practical knowledge to understand how decision trees perform under the hood.

👉 Don't forget to like, subscribe, and drop your questions in the comments!

#DecisionTree #MachineLearning #ComputationalComplexity #DataScience #AI #MLAlgorithms #ID3 #CART #XGBoost

Видео Computational Complexity || Decision Tree || ID3 || CART канала Dr. RAMBABU PEMULA
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять