Загрузка...

How to Build a RAG AI Agent with Pinecone Vector store and Gemini in N8N: A Step-by-Step Guide

🔍 Learn how to build a powerful Retrieval-Augmented Generation (RAG) chatbot using Google Gemini and Pinecone!

In this step-by-step tutorial, you'll discover how to integrate Gemini AI with Qdrant vector database to create an intelligent chatbot capable of real-time document search and natural language responses. Whether you're a developer, data scientist, or AI enthusiast, this video breaks down everything you need—from setting up Pinecone to querying with Gemini using your custom data.

📌 In this video you'll learn:

What RAG (Retrieval-Augmented Generation) is and why it matters

How to set up and configure Pinecone

How to connect Gemini AI with Pinecone for contextual search

How to index documents and respond intelligently

Example use cases and applications

🛠 Tools Used:

Pinecone (Open-Source Vector DB)

Gemini AI (Google's Next-Gen LLM)

Python

👉 Don’t forget to like, comment, and subscribe for more AI automation tutorials!

#GeminiAI #Pinecone #RAG #AIChatbot #VectorSearch #LLM #HowToAI

JSON File in Skool Community - https://www.skool.com/inside-the-ai-7780/about?ref=a9d6e1a4eda445388691a75ce8ee985e
Skool community affiliate link - https://www.skool.com/signup?ref=a9d6e1a4eda445388691a75ce8ee985e

Видео How to Build a RAG AI Agent with Pinecone Vector store and Gemini in N8N: A Step-by-Step Guide канала Inside the AI
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки