Large Language Models 101: Why Fine-Tune & When to Use RAG – Complete Guide
You can book One to one consultancy session with me on Mentoga: https://mentoga.com/muhammadaammartufail
Papers to read:
1. LoRA: Low-Rank Adaptation of Large Language Models. https://arxiv.org/abs/2106.09685
2. QLoRA: Efficient Finetuning of Quantized LLMs. https://arxiv.org/abs/2305.14314
3. Accurate LoRA-Finetuning Quantization of LLMs via Information Retention. https://arxiv.org/abs/2402.05445
#######################################################################
GitHub Repo for DSAAMP codes: https://github.com/AammarTufail/DSAAMP_2025
#######################################################################
ی LLMs (Large Language Models) کیا ہوتی ہیں اور آخر انہیں فائن-ٹیون کرنے کی ضرورت کیوں پیش آتی ہے؟ اس ویڈیو میں آپ سیکھیں گے:
LLM Basics – Transformer architecture, billions of parameters, pre-training
Fine-Tuning Explained – Domain-specific data, low-rank adaptation (LoRA), PEFT
RAG vs Fine-Tuning – Retrieval-Augmented Generation کب بہتر ہے، کب فائن-ٹیون؟
Cost & Performance Trade-offs – Latency, GPU RAM, token budgets
Hands-On Demo – Hugging Face + LoRA پر ایک اردو ڈومین ماڈل کو فائن-ٹیون کر کے دیکھیں
Best Practices – Data cleaning, evaluation metrics (BLEU, Rouge, Exact Match)
Use-Cases – Healthcare chatbots, legal document Q/A, e-commerce assistants
🚀 Code, notebooks اور ڈیٹا سیٹ لنک کمنٹس میں موجود ہیں۔
🌐 مکمل روڈمیپ ➜ codanics.com/roadmap
#LargeLanguageModels #LLM #FineTuning #RAG #Transformers #HuggingFace #AI #MachineLearning #codanics #urdu #hindi #pakistan #india #science #recent #2025 #babaaammar #aammartufail
LargeLanguageModels, LLM, FineTuning, RAG, Transformers, HuggingFace, AI, MachineLearning, DomainAdaptation, LoRA, PEFT, codanics, urdu, hindi, pakistan, india, science, recent, 2025, babaaammar, aammartufail
#codanics #dataanalytics #pythonkachilla #pkc24 #dsaamp
✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅
4-Months of Data Science to AI Agents Mentorship Program (DSAAMP)
Hurry up!
Register now, only few seats available.
More information about the course and the registration link to google form: https://forms.gle/8dHbiu2TGmHTzgYY8
✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅
---------------------------------------------------------------------------------------------------------------------------------------
Here is the playlist with all free crash courses:
https://www.youtube.com/playlist?list=PL9XvIvvVL50EKXNwINseqf8pCPnPrg5qh
Please share and like this video, also write your comment here and subscribe our channel.
---------------------------------------------------------------------------------------------------------------------------------------
✅Our Free Books: https://codanics.com/books/abc-of-statistics-for-data-science/
✅Our website: https://www.codanics.com
✅Our Courses: https://www.codanics.com/courses
✅Our YouTube Channel: www.youtube.com/@Codanics
✅ Our whatsapp channel: https://whatsapp.com/channel/0029Va7nRDq3QxRzGqaQvS3r
✅Our Facebook Group: https://www.facebook.com/groups/codanics
✅Our Discord group for community Discussion: https://discord.gg/QpvUKEtUJD
✉️For more Details contact us at info@codanics.com
Chapter:
00:00:00 Content
00:01:00 What are LLMs?
00:03:23 How LLMs work?
00:12:21 Parameters of LLMs
00:18:10 Famous LLMs
00:20:26 LLMs vs Fine tuned LLMs vs RAG based LLMs
00:35:42 Finetuning a LLM
00:43:05 Five steps of Fine tuning a LLM
00:53:31 Three ways to fine tune a model
01:04:40 LoRA vs QLoRA for fine tuning
01:10:25 Research Papers for LoRA and QLoRA
01:12:08 Python and Fine Tuning a LLM with code
01:23:30 Ideas and Queries for Fine tuning a LLM
Видео Large Language Models 101: Why Fine-Tune & When to Use RAG – Complete Guide канала Codanics
Papers to read:
1. LoRA: Low-Rank Adaptation of Large Language Models. https://arxiv.org/abs/2106.09685
2. QLoRA: Efficient Finetuning of Quantized LLMs. https://arxiv.org/abs/2305.14314
3. Accurate LoRA-Finetuning Quantization of LLMs via Information Retention. https://arxiv.org/abs/2402.05445
#######################################################################
GitHub Repo for DSAAMP codes: https://github.com/AammarTufail/DSAAMP_2025
#######################################################################
ی LLMs (Large Language Models) کیا ہوتی ہیں اور آخر انہیں فائن-ٹیون کرنے کی ضرورت کیوں پیش آتی ہے؟ اس ویڈیو میں آپ سیکھیں گے:
LLM Basics – Transformer architecture, billions of parameters, pre-training
Fine-Tuning Explained – Domain-specific data, low-rank adaptation (LoRA), PEFT
RAG vs Fine-Tuning – Retrieval-Augmented Generation کب بہتر ہے، کب فائن-ٹیون؟
Cost & Performance Trade-offs – Latency, GPU RAM, token budgets
Hands-On Demo – Hugging Face + LoRA پر ایک اردو ڈومین ماڈل کو فائن-ٹیون کر کے دیکھیں
Best Practices – Data cleaning, evaluation metrics (BLEU, Rouge, Exact Match)
Use-Cases – Healthcare chatbots, legal document Q/A, e-commerce assistants
🚀 Code, notebooks اور ڈیٹا سیٹ لنک کمنٹس میں موجود ہیں۔
🌐 مکمل روڈمیپ ➜ codanics.com/roadmap
#LargeLanguageModels #LLM #FineTuning #RAG #Transformers #HuggingFace #AI #MachineLearning #codanics #urdu #hindi #pakistan #india #science #recent #2025 #babaaammar #aammartufail
LargeLanguageModels, LLM, FineTuning, RAG, Transformers, HuggingFace, AI, MachineLearning, DomainAdaptation, LoRA, PEFT, codanics, urdu, hindi, pakistan, india, science, recent, 2025, babaaammar, aammartufail
#codanics #dataanalytics #pythonkachilla #pkc24 #dsaamp
✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅
4-Months of Data Science to AI Agents Mentorship Program (DSAAMP)
Hurry up!
Register now, only few seats available.
More information about the course and the registration link to google form: https://forms.gle/8dHbiu2TGmHTzgYY8
✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅
---------------------------------------------------------------------------------------------------------------------------------------
Here is the playlist with all free crash courses:
https://www.youtube.com/playlist?list=PL9XvIvvVL50EKXNwINseqf8pCPnPrg5qh
Please share and like this video, also write your comment here and subscribe our channel.
---------------------------------------------------------------------------------------------------------------------------------------
✅Our Free Books: https://codanics.com/books/abc-of-statistics-for-data-science/
✅Our website: https://www.codanics.com
✅Our Courses: https://www.codanics.com/courses
✅Our YouTube Channel: www.youtube.com/@Codanics
✅ Our whatsapp channel: https://whatsapp.com/channel/0029Va7nRDq3QxRzGqaQvS3r
✅Our Facebook Group: https://www.facebook.com/groups/codanics
✅Our Discord group for community Discussion: https://discord.gg/QpvUKEtUJD
✉️For more Details contact us at info@codanics.com
Chapter:
00:00:00 Content
00:01:00 What are LLMs?
00:03:23 How LLMs work?
00:12:21 Parameters of LLMs
00:18:10 Famous LLMs
00:20:26 LLMs vs Fine tuned LLMs vs RAG based LLMs
00:35:42 Finetuning a LLM
00:43:05 Five steps of Fine tuning a LLM
00:53:31 Three ways to fine tune a model
01:04:40 LoRA vs QLoRA for fine tuning
01:10:25 Research Papers for LoRA and QLoRA
01:12:08 Python and Fine Tuning a LLM with code
01:23:30 Ideas and Queries for Fine tuning a LLM
Видео Large Language Models 101: Why Fine-Tune & When to Use RAG – Complete Guide канала Codanics
Комментарии отсутствуют
Информация о видео
6 июля 2025 г. 23:52:23
01:29:32
Другие видео канала