Mathematical Art: Pulsating Gaussian Field | Dynamic 3D Function
Explore the mesmerizing beauty of mathematics with this dynamic 3D animation of the function: Pulsating Gaussian Field.
Formula: f(x,y,t) = \left(\sin{\left(- t + x^{2} + y^{2} \right)} + \cos{\left(2 t \right)}\right) e^{- 0.1 \left(x - 2 \cos{\left(0.5 t \right)}\right)^{2} - 0.1 \left(y - 2 \sin{\left(0.5 t \right)}\right)^{2}} \sin{\left(\frac{t}{2} \right)}
Python/NumPy: f(x,y,t) = (np.sin(x**2+y**2-t) + np.cos(2*t)) * np.exp(-0.1*((x-2*np.cos(0.5*t))**2 + (y-2*np.sin(0.5*t))**2)) * np.sin(t/2)
Domain: x ∈ [-5, 5], y ∈ [-5, 5], with time 't' evolving from 0s to 15s.
Generated using Python with Matplotlib and SymPy.
Perfect for math enthusiasts, students, and anyone who appreciates the artistic side of equations.
#MathArt #DynamicMath #MathematicalVisualization #Python #SymPy #Matplotlib
#PulsacionesritmicasVisual
Видео Mathematical Art: Pulsating Gaussian Field | Dynamic 3D Function канала Stunning Revelations
Formula: f(x,y,t) = \left(\sin{\left(- t + x^{2} + y^{2} \right)} + \cos{\left(2 t \right)}\right) e^{- 0.1 \left(x - 2 \cos{\left(0.5 t \right)}\right)^{2} - 0.1 \left(y - 2 \sin{\left(0.5 t \right)}\right)^{2}} \sin{\left(\frac{t}{2} \right)}
Python/NumPy: f(x,y,t) = (np.sin(x**2+y**2-t) + np.cos(2*t)) * np.exp(-0.1*((x-2*np.cos(0.5*t))**2 + (y-2*np.sin(0.5*t))**2)) * np.sin(t/2)
Domain: x ∈ [-5, 5], y ∈ [-5, 5], with time 't' evolving from 0s to 15s.
Generated using Python with Matplotlib and SymPy.
Perfect for math enthusiasts, students, and anyone who appreciates the artistic side of equations.
#MathArt #DynamicMath #MathematicalVisualization #Python #SymPy #Matplotlib
#PulsacionesritmicasVisual
Видео Mathematical Art: Pulsating Gaussian Field | Dynamic 3D Function канала Stunning Revelations
Комментарии отсутствуют
Информация о видео
16 мая 2025 г. 0:59:24
00:00:11
Другие видео канала