Загрузка страницы

UPI Fraud Detection Using Machine Learning - Part 3: Model Building & Optimization #machinelearning

Hi There,

Welcome to AnalyticalAnuj, In this uncut video, we’re diving into Part 3 of the UPI Fraud Detection Project using machine learning. This time, we’ll focus on model building, optimization, and performance evaluation to create a robust fraud detection system.

What you’ll learn in this video:
✅ How to preprocess real-world data for machine learning.
✅ Choosing the best classification models (Decision Tree, Random Forest, Gradient Boosting, XGBoost).
✅ Handling class imbalance with SMOTE to improve model fairness.
✅ Evaluating model performance with critical metrics like Accuracy, Precision, Recall, and ROC-AUC.
✅ Optimizing model hyper parameters using GridSearchCV for better results.

By the end of this video, you’ll have a powerful, optimized machine learning model ready for fraud detection in financial systems.

Timestamps:
0:00 Introduction
00:57 Agenda for the video
04:37 Dropping unnecessary columns
05:43 Data preprocessing: Encoding & Scaling
10:45 Model selection & why these models are used
15:45 Performance metrics overview
24:58 Balancing data with SMOTE
26:55 Model Outputs
27:21 Model optimization with GridSearchCV
28:46 Retraining models and comparing results
30:10 Visualizing model performance
31:09 Saving the final model
31:54 Project Conclusion
Join our community!
🔔 Subscribe to AnalyticalAnuj and stay updated on the latest tutorials in machine learning, data science, and AI.

Hashtags:
#UPI #FRAUD #Detection #UPIFRAUD #ML #PROJECT #PORTFOLIO #projects #DataAnalysis #MachineLearning #UPI #PythonForDataScience #ArtificialIntelligence #UncutVideo #DataScienceJobs #FinancialData #PythonDevelopers #UPIPaymentSystems #TechTraining #RawData #MachineLearningTutorial #AI #DataScienceTutorials #JobSeekers #HowTo #WhatIs #Trending #DataScience #DataAnalytics #DataScienceInterview #Tableau #Python #MachineLearning #DeepLearning #StatisticalAnalysis #TechTutorials #DataCareers #LearnTableau #BusinessIntelligence #DataVisualization #AI #ML #DataJobs #TechJobs #Programming #Coding #TableauTips #PythonForDataScience #Analytics #TechSkills #CareerInTech #DataScienceCommunity #BigData #InterviewPrep #LearnDataScience #BeginnerToPro #TableauPublic #DataStorytelling #DataVisualizationSkills #PythonProgramming #LearnPython #DeepLearningTutorials #DataScience2024 #AnalyticsJourney #BusinessAnalytics #DataDriven #CareerInDataScience #CareerGrowth #TechIndustry #FutureOfDataScience #TableauExperts #TableauSkills #AnalyticalAnuj #DataScienceForBeginners #MachineLearningAlgorithms #DeepLearningModels #DataScienceJobs #DataScienceSkills #PythonForAnalytics #MachineLearningForBeginners #DeepLearningForBeginners #DataScienceCertification #DataScienceCourses #LearnDataAnalytics #DataScienceTrends #DataScienceProjects #DataScienceLife #DataScienceLearningPath #CareerInAnalytics #TechTrends #DataScienceResources #DataSciencePath #PythonForBeginners #MachineLearningBasics #DeepLearningBasics #DataScience101 #DataAnalytics101 #TechTutorialsForBeginners #LearnToCode #DataScienceInterviews #DataScienceGuides #DataScienceSuccess #MachineLearningCareers #DeepLearningCareers #DataScienceJobs2024 #DataAnalyticsJobs #TechEducation2024 #LearnWithUs #DataScienceWorkshop #PythonInDataScience #MachineLearningForProfessionals #DeepLearningForProfessionals #analyticalanuj

Видео UPI Fraud Detection Using Machine Learning - Part 3: Model Building & Optimization #machinelearning канала Anuj Rastogi
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки