Загрузка страницы

SARIMA model | Time Series Analysis #timeseriesanalysis #sarima @content-academy

In this video, I detail the SARIMA (Seasonal AutoRegressive Integrated Moving Average) model, a powerful tool for forecasting time series data with seasonal patterns. I break down the components of the SARIMA model, including the non-seasonal (p, d, q) and seasonal (P, D, Q, s) parameters, and explain how to compute and interpret each one. I stated the different parameters - the Autoregressive Parameter, the Backward Shift parameter, the Degree of Differencing, the Time Series Parameter, the Moving Average Parameter and the Error term or White process parameter. I showed a step-by-step approach on how to compute the SARIMA Model

If you're looking to master time series forecasting, understanding and applying SARIMA is a must! Watch the video to get a comprehensive tutorial and practical tips.

Don't forget to Subscribe for more videos on data analysis, machine learning, and time series forecasting!

Need a Tutor/Assistance?

Join our WhatsApp group, link below:
https://l1nk.dev/8KNNf

Send a Message on WhatsApp
http://wa.me/+2348035415248
https://wa.me/+2348023548354

Subscriber Link
https://rb.gy/ewtolh

TikTok
http://tiktok.com/@content_academy

#SARIMA #timeseries #forecasting #DataScience #ARIMA #SeasonalData #MachineLearning #DataAnalysis #StatsModels #movingaverage #timeseriesanalysis

Видео SARIMA model | Time Series Analysis #timeseriesanalysis #sarima @content-academy канала CONTENT-ACADEMY
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки