Загрузка страницы

Enhanced POET: Open-Ended RL through Unbounded Invention of Learning Challenges and their Solutions

The enhanced POET makes some substantial and well-crafted improvements over the original POET algorithm and excels at open-ended learning like no system before.

https://arxiv.org/abs/2003.08536
https://youtu.be/RX0sKDRq400

Abstract:
Creating open-ended algorithms, which generate their own never-ending stream of novel and appropriately challenging learning opportunities, could help to automate and accelerate progress in machine learning. A recent step in this direction is the Paired Open-Ended Trailblazer (POET), an algorithm that generates and solves its own challenges, and allows solutions to goal-switch between challenges to avoid local optima. However, the original POET was unable to demonstrate its full creative potential because of limitations of the algorithm itself and because of external issues including a limited problem space and lack of a universal progress measure. Importantly, both limitations pose impediments not only for POET, but for the pursuit of open-endedness in general. Here we introduce and empirically validate two new innovations to the original algorithm, as well as two external innovations designed to help elucidate its full potential. Together, these four advances enable the most open-ended algorithmic demonstration to date. The algorithmic innovations are (1) a domain-general measure of how meaningfully novel new challenges are, enabling the system to potentially create and solve interesting challenges endlessly, and (2) an efficient heuristic for determining when agents should goal-switch from one problem to another (helping open-ended search better scale). Outside the algorithm itself, to enable a more definitive demonstration of open-endedness, we introduce (3) a novel, more flexible way to encode environmental challenges, and (4) a generic measure of the extent to which a system continues to exhibit open-ended innovation. Enhanced POET produces a diverse range of sophisticated behaviors that solve a wide range of environmental challenges, many of which cannot be solved through other means.

Authors: Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, Kenneth O. Stanley

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher

Видео Enhanced POET: Open-Ended RL through Unbounded Invention of Learning Challenges and their Solutions канала Yannic Kilcher
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
10 апреля 2020 г. 15:11:09
00:15:40
Другие видео канала
WHO ARE YOU? 10k Subscribers Special (w/ Channel Analytics)WHO ARE YOU? 10k Subscribers Special (w/ Channel Analytics)Datasets for Data-Driven Reinforcement LearningDatasets for Data-Driven Reinforcement LearningReinforcement Learning with Augmented Data (Paper Explained)Reinforcement Learning with Augmented Data (Paper Explained)The Odds are Odd: A Statistical Test for Detecting Adversarial ExamplesThe Odds are Odd: A Statistical Test for Detecting Adversarial ExamplesExpire-Span: Not All Memories are Created Equal: Learning to Forget by Expiring (Paper Explained)Expire-Span: Not All Memories are Created Equal: Learning to Forget by Expiring (Paper Explained)REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained)REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained)Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)[Classic] Playing Atari with Deep Reinforcement Learning (Paper Explained)[Classic] Playing Atari with Deep Reinforcement Learning (Paper Explained)Symbolic Knowledge Distillation: from General Language Models to Commonsense Models (Explained)Symbolic Knowledge Distillation: from General Language Models to Commonsense Models (Explained)Gradient Origin Networks (Paper Explained w/ Live Coding)Gradient Origin Networks (Paper Explained w/ Live Coding)Perceiver: General Perception with Iterative Attention (Google DeepMind Research Paper Explained)Perceiver: General Perception with Iterative Attention (Google DeepMind Research Paper Explained)PonderNet: Learning to Ponder (Machine Learning Research Paper Explained)PonderNet: Learning to Ponder (Machine Learning Research Paper Explained)ALiBi - Train Short, Test Long: Attention with linear biases enables input length extrapolationALiBi - Train Short, Test Long: Attention with linear biases enables input length extrapolationListening to You! - Channel Update (Author Interviews)Listening to You! - Channel Update (Author Interviews)On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)[ML News] Uber: Deep Learning for ETA | MuZero Video Compression  | Block-NeRF | EfficientNet-X[ML News] Uber: Deep Learning for ETA | MuZero Video Compression | Block-NeRF | EfficientNet-XGrowing Neural Cellular AutomataGrowing Neural Cellular Automata[ML News] DeepMind's Flamingo Image-Text model | Locked-Image Tuning | Jurassic X & MRKL[ML News] DeepMind's Flamingo Image-Text model | Locked-Image Tuning | Jurassic X & MRKLAvoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control (Paper Explained)AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control (Paper Explained)SupSup: Supermasks in Superposition (Paper Explained)SupSup: Supermasks in Superposition (Paper Explained)
Яндекс.Метрика