Series Inverter working in tamil
Series Inverter working Principle Operation
What is an Inverter?
An inverter converts the DC voltage to an AC voltage. In most cases, the input DC voltage is usually lower while the output AC is equal to the grid supply voltage of either 120 volts, or 240 Volts depending on the country.
The inverter may be built as standalone equipment for applications such as solar power, or to work as a backup power supply from batteries which are charged separately.
The other configuration is when it is a part of a bigger circuit such as a power supply unit, or a UPS. In this case, the inverter input DC is from the rectified mains AC in the PSU, while from either the rectified AC in the in the UPS when there is power, and from the batteries whenever there is a power failure.
There are different types of inverters based on the shape of the switching waveform. These have varying circuit configurations, efficiencies, advantages and disadvantages
An inverter provides an ac voltage from dc power sources and is useful in powering electronics and electrical equipment rated at the ac mains voltage. In addition they are widely used in the switched mode power supplies inverting stages. The circuits are classified according the switching technology and switch type, the waveform, the frequency and output waveform.
Basic inverter operation
The basic circuits include an oscillator, control circuit, drive circuit for the power devices, switching devices, and a transformer.
The conversion of dc to alternating voltage is achieved by converting energy stored in the dc source such as the battery, or from a rectifier output, into an alternating voltage. This is done using switching devices which are continuously turned on and off, and then stepping up using the transformer. Although there are some configurations which do not use a transformer, these are not widely used.
The DC input voltage is switched on and off by the power devices such as MOSFETs or power transistors and the pulses fed to the primary side of the transformer. The varying voltage in the primary induces an alternating voltage at secondary winding. The transformer also works as an amplifier where it increases the output voltage at a ratio determined by the turn’s ratio. In most cases the output voltage is raised from the standard 12 volts supplied by the batteries to either 120 Volts or 240 volts AC.
The three commonly used Inverter output stages are, a push-pull with centre tap transformer, push-pull half-bridge, or push-pull full bridge. The push pull with centre tap is most popular due to its simplicity and, guaranteed results; however, it uses a heavier transformer and has a lower efficiency.
A simple push pull DC to AC inverter with centre tap transformer circuit.
Thank You for watching
Видео Series Inverter working in tamil канала EEE VIDS
What is an Inverter?
An inverter converts the DC voltage to an AC voltage. In most cases, the input DC voltage is usually lower while the output AC is equal to the grid supply voltage of either 120 volts, or 240 Volts depending on the country.
The inverter may be built as standalone equipment for applications such as solar power, or to work as a backup power supply from batteries which are charged separately.
The other configuration is when it is a part of a bigger circuit such as a power supply unit, or a UPS. In this case, the inverter input DC is from the rectified mains AC in the PSU, while from either the rectified AC in the in the UPS when there is power, and from the batteries whenever there is a power failure.
There are different types of inverters based on the shape of the switching waveform. These have varying circuit configurations, efficiencies, advantages and disadvantages
An inverter provides an ac voltage from dc power sources and is useful in powering electronics and electrical equipment rated at the ac mains voltage. In addition they are widely used in the switched mode power supplies inverting stages. The circuits are classified according the switching technology and switch type, the waveform, the frequency and output waveform.
Basic inverter operation
The basic circuits include an oscillator, control circuit, drive circuit for the power devices, switching devices, and a transformer.
The conversion of dc to alternating voltage is achieved by converting energy stored in the dc source such as the battery, or from a rectifier output, into an alternating voltage. This is done using switching devices which are continuously turned on and off, and then stepping up using the transformer. Although there are some configurations which do not use a transformer, these are not widely used.
The DC input voltage is switched on and off by the power devices such as MOSFETs or power transistors and the pulses fed to the primary side of the transformer. The varying voltage in the primary induces an alternating voltage at secondary winding. The transformer also works as an amplifier where it increases the output voltage at a ratio determined by the turn’s ratio. In most cases the output voltage is raised from the standard 12 volts supplied by the batteries to either 120 Volts or 240 volts AC.
The three commonly used Inverter output stages are, a push-pull with centre tap transformer, push-pull half-bridge, or push-pull full bridge. The push pull with centre tap is most popular due to its simplicity and, guaranteed results; however, it uses a heavier transformer and has a lower efficiency.
A simple push pull DC to AC inverter with centre tap transformer circuit.
Thank You for watching
Видео Series Inverter working in tamil канала EEE VIDS
Показать
Комментарии отсутствуют
Информация о видео
Другие видео канала
Difference FET and UJT Symbols in tamilWhat is adder circuit in op-amp in tamilLight holder Extension Switche BoxRegister Addressing |8051-Microcontroller Instruction Set ADDRESSING MODES | in tamilDiffrence between Inverting Amplifier and Non Inverting Amplifier in tamilApplications of Op Amplifier in tamilBlock diagram of operational amplifier in tamil2Byte Addition or Multi Addition microcontroller Program3Phase to Single Phase Cyclo Converter in tamilAND Gate Working in tamil |Logic Gates in tamil|8051 Data transfer groups in tamilTemperature co-efficient model problem in tamilWhat is bandwidth of an ideal amplifier in tamilWrite data to Ports Microcontroller| Transistor CircuitDifference SCR single phase Half wave Rectifier and Full wave Rectifie in tamilNOT Logical Instructions in 8051 MicrocontrollerDifference between differentiator and integrator in op-amp in tamilData Transfer Group's| Algrathim Multiplication and Division instructionsDecimal to Octal Converter in tamil | Calculation Steps|Define capacitive reactance in tamil