Загрузка страницы

2023 H2020 Zephyr ESR 7: Small VAWTs and HAWTs wind turbines for municipal, low noise applications

The early stage researcher project of Shivangi Sachar is part of the Zephyr project (Towards more efficient exploitation of on-shore and urban wind energy resources) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 860101.

Shivangi investigates the relation between noise generation and energy production in the WT laboratory at IMP-PAN; correlation between simulation and experiments; assessment of flow control methods for noise reduction; study of the application of new materials to minimise the rotor deformation and the effect of interaction with stator guiding plates.

Видео 2023 H2020 Zephyr ESR 7: Small VAWTs and HAWTs wind turbines for municipal, low noise applications канала von Karman Institute for Fluid Dynamics
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
7 июля 2023 г. 14:09:34
00:03:31
Другие видео канала
Early Stage Researchers on Flow and Acoustic Control for Automotive Low-Speed Cooling FansEarly Stage Researchers on Flow and Acoustic Control for Automotive Low-Speed Cooling FansDynamic Mode Decomposition from Koopman: Theory to Applications (Prof. Peter J. Schmid) - Part 2Dynamic Mode Decomposition from Koopman: Theory to Applications (Prof. Peter J. Schmid) - Part 2The Computer as Turbulence Researcher (Prof. Javier Jiménez) – Part 3The Computer as Turbulence Researcher (Prof. Javier Jiménez) – Part 3Coherent Structures in Turbulent Flows (Prof. Javier Jiménez) - Part 1Coherent Structures in Turbulent Flows (Prof. Javier Jiménez) - Part 1Nonlinear Dynamical Systems (Prof. Steve L. Brunton) – Part 3Nonlinear Dynamical Systems (Prof. Steve L. Brunton) – Part 3Machine Learning for Reduced-Order Modeling (Prof. Bernd R. Noack)Machine Learning for Reduced-Order Modeling (Prof. Bernd R. Noack)Machine Learning in Fluids: Pairing Methods with Problems (Prof. Steve L. Brunton) – Part 1Machine Learning in Fluids: Pairing Methods with Problems (Prof. Steve L. Brunton) – Part 1Discover Pantther - Experimental and numerical multiscale multiphasic heat Exchanger (long)Discover Pantther - Experimental and numerical multiscale multiphasic heat Exchanger (long)2021 H2020 Zephyr ESR 5: Optimization of roof- and ground-mounted HAWTs in the built-environment2021 H2020 Zephyr ESR 5: Optimization of roof- and ground-mounted HAWTs in the built-environment2021 H2020 Zephyr ESR 14:  Inflow conditions on the source noise of onshore turbines by C. Hoffrogge2021 H2020 Zephyr ESR 14: Inflow conditions on the source noise of onshore turbines by C. HoffroggeIntroduction to Machine Learning Methods (Prof. Steve L. Brunton) – Part 1Introduction to Machine Learning Methods (Prof. Steve L. Brunton) – Part 1Modern Tools for the Stability Analysis of Fluid Flows (Prof. Peter J. Schmid) – Part 3Modern Tools for the Stability Analysis of Fluid Flows (Prof. Peter J. Schmid) – Part 3Applications and Good Practice (Prof. Andrea Ianiro) – Part 2Applications and Good Practice (Prof. Andrea Ianiro) – Part 22021 H2020 Zephyr - ESR 3: Fast turn-around methods for wind turbine noise assessment2021 H2020 Zephyr - ESR 3: Fast turn-around methods for wind turbine noise assessmentModern Tools for the Stability Analysis of Fluid Flows (Prof. Peter J. Schmid)Modern Tools for the Stability Analysis of Fluid Flows (Prof. Peter J. Schmid)Machine Learning for Reduced-Order Modeling (Prof. Bernd R. Noack) – Part 1Machine Learning for Reduced-Order Modeling (Prof. Bernd R. Noack) – Part 1Nonlinear Dynamical Systems (Prof. Steve L. Brunton) – Part 1Nonlinear Dynamical Systems (Prof. Steve L. Brunton) – Part 1QB50 ProjectQB50 Project2021 H2020 Zephyr ESR 11: Aeroacoustic Optimization of Ducted Wind Turbines by José Manoel Guimarães2021 H2020 Zephyr ESR 11: Aeroacoustic Optimization of Ducted Wind Turbines by José Manoel GuimarãesThe Computer as Turbulence Researcher (Prof. Javier Jiménez) – Part 4The Computer as Turbulence Researcher (Prof. Javier Jiménez) – Part 4
Яндекс.Метрика