- Популярные видео
- Авто
- Видео-блоги
- ДТП, аварии
- Для маленьких
- Еда, напитки
- Животные
- Закон и право
- Знаменитости
- Игры
- Искусство
- Комедии
- Красота, мода
- Кулинария, рецепты
- Люди
- Мото
- Музыка
- Мультфильмы
- Наука, технологии
- Новости
- Образование
- Политика
- Праздники
- Приколы
- Природа
- Происшествия
- Путешествия
- Развлечения
- Ржач
- Семья
- Сериалы
- Спорт
- Стиль жизни
- ТВ передачи
- Танцы
- Технологии
- Товары
- Ужасы
- Фильмы
- Шоу-бизнес
- Юмор
Python Decorators Explained for Data Science/ML/AI Interviews | Real ML Pipeline Example
#datascience #interviewpreparation #machinelearning #artificialintelligence #decorators
🎯 Preparing for a Data Science or Machine Learning interview?
This video explains one of the most commonly asked — yet misunderstood — Python interview questions:
“What are Python decorators, and how are they used in data pipelines?”
You’ll learn how to answer this question like a senior data scientist — with clarity, confidence, and a real-world project example.
🔥 What You’ll Learn
---------------------------------
• **Python Decorators Explained Simply** – Understand what decorators are and how they modify function behavior without touching original code.
• **Real Data Pipeline Example** – Build a `@cache_result` decorator that saves expensive feature computations to Redis.
• **Interview-Ready Explanation** – Learn how to frame your answer with business impact (how a 45-minute ML pipeline run dropped to 8 minutes).
• **Code Walkthrough** – Timer decorator explained in plain English (no code reading, just understanding).
• **Common Interview Traps** – What mistakes to avoid: decorator side effects, testing, and shared state bugs.
• **Production Tips** – When to use decorators for logging, validation, or caching ML models.
👨💻 Who This Is For
---------------------------------
• Data Scientists, ML Engineers, and AI Developers preparing for Python interviews.
• Software Engineers transitioning into Data roles.
• Students & professionals preparing for FAANG, startups, or data science coding rounds.
💬 Sample Interview Answer (use this pattern):
“In my ML pipeline, I implemented a `@cache_result` decorator that stored heavy feature computations in Redis.
This reduced pipeline runtime from 45 minutes to 8 minutes.
The decorator pattern kept the logic modular and production-ready — a key principle in clean ML engineering.”
📚 Related Topics You’ll Understand Better:
• Higher-order functions and closures in Python
• Code reusability and separation of concerns
• Data pipeline optimization and caching
• Interview patterns for clean Python architecture
📂 Complete Playlist:
https://www.youtube.com/playlist?list=PLJ_Lg6q5vftY99yxpkTCac75VvlsPcQoJ
⏱️ Chapters:
00:00 – 00:10 Hook: Why this question matters in interviews
00:10 – 00:30 What are Python decorators
00:30 – 00:50 Why decorators are important in ML pipelines
00:50 – 01:10 Timer decorator explained in plain English
01:10 – 01:35 Real-world caching example
01:35 – 01:55 ML production use cases (retry, validation)
01:55 – 02:10 Sample interview answer
02:10 – 02:50 Common pitfalls and best practices
02:50 – 03:00 Closing: Learn more from full playlist
🎓 Learning Outcomes
---------------------------------
By the end of this video, you’ll be able to:
• Explain decorators confidently in a Python/ML interview.
• Apply decorators to optimize real data pipelines.
• Use decorators for caching, logging, and validation in ML workflows.
• Avoid common decorator pitfalls in production code.
#pythondecorator #datascienceinterview #machinelearninginterview #pythoninterviewquestions #mlengineer #aiinterview #pythonforai #datasciencecareer #interviewprep
Видео Python Decorators Explained for Data Science/ML/AI Interviews | Real ML Pipeline Example канала Peetha Academy
🎯 Preparing for a Data Science or Machine Learning interview?
This video explains one of the most commonly asked — yet misunderstood — Python interview questions:
“What are Python decorators, and how are they used in data pipelines?”
You’ll learn how to answer this question like a senior data scientist — with clarity, confidence, and a real-world project example.
🔥 What You’ll Learn
---------------------------------
• **Python Decorators Explained Simply** – Understand what decorators are and how they modify function behavior without touching original code.
• **Real Data Pipeline Example** – Build a `@cache_result` decorator that saves expensive feature computations to Redis.
• **Interview-Ready Explanation** – Learn how to frame your answer with business impact (how a 45-minute ML pipeline run dropped to 8 minutes).
• **Code Walkthrough** – Timer decorator explained in plain English (no code reading, just understanding).
• **Common Interview Traps** – What mistakes to avoid: decorator side effects, testing, and shared state bugs.
• **Production Tips** – When to use decorators for logging, validation, or caching ML models.
👨💻 Who This Is For
---------------------------------
• Data Scientists, ML Engineers, and AI Developers preparing for Python interviews.
• Software Engineers transitioning into Data roles.
• Students & professionals preparing for FAANG, startups, or data science coding rounds.
💬 Sample Interview Answer (use this pattern):
“In my ML pipeline, I implemented a `@cache_result` decorator that stored heavy feature computations in Redis.
This reduced pipeline runtime from 45 minutes to 8 minutes.
The decorator pattern kept the logic modular and production-ready — a key principle in clean ML engineering.”
📚 Related Topics You’ll Understand Better:
• Higher-order functions and closures in Python
• Code reusability and separation of concerns
• Data pipeline optimization and caching
• Interview patterns for clean Python architecture
📂 Complete Playlist:
https://www.youtube.com/playlist?list=PLJ_Lg6q5vftY99yxpkTCac75VvlsPcQoJ
⏱️ Chapters:
00:00 – 00:10 Hook: Why this question matters in interviews
00:10 – 00:30 What are Python decorators
00:30 – 00:50 Why decorators are important in ML pipelines
00:50 – 01:10 Timer decorator explained in plain English
01:10 – 01:35 Real-world caching example
01:35 – 01:55 ML production use cases (retry, validation)
01:55 – 02:10 Sample interview answer
02:10 – 02:50 Common pitfalls and best practices
02:50 – 03:00 Closing: Learn more from full playlist
🎓 Learning Outcomes
---------------------------------
By the end of this video, you’ll be able to:
• Explain decorators confidently in a Python/ML interview.
• Apply decorators to optimize real data pipelines.
• Use decorators for caching, logging, and validation in ML workflows.
• Avoid common decorator pitfalls in production code.
#pythondecorator #datascienceinterview #machinelearninginterview #pythoninterviewquestions #mlengineer #aiinterview #pythonforai #datasciencecareer #interviewprep
Видео Python Decorators Explained for Data Science/ML/AI Interviews | Real ML Pipeline Example канала Peetha Academy
python decorators data science interview python decorator interview question ml engineer python interview example ai interview python questions data pipeline python decorator example decorator caching feature computations data science interview coding questions python decorator real world example ml pipeline interview python data science interview preparation python for machine learning interview
Комментарии отсутствуют
Информация о видео
26 октября 2025 г. 22:30:09
00:02:51
Другие видео канала





















