Загрузка...

PySpark Tutorial Section 2: PySpark Data Pipeline using AWS: S3, Glue Crawler, Catalog & Athena

In Section 2 of our PySpark Tutorial Series, learn how to build a complete ETL data pipeline using PySpark on AWS Glue, starting from raw data in Amazon S3 to querying results with Amazon Athena.

This hands-on session walks through the entire serverless pipeline setup—ideal for Data Engineers and Big Data Developers looking to leverage AWS Glue for scalable ETL workloads.

✅ What You’ll Learn:

Uploading and organizing data in Amazon S3

Creating and assigning IAM Roles for Glue access

Setting up a Glue Database and Glue Crawler

Generating schema with the Glue Data Catalog

Writing PySpark ETL code using Glue’s DynamicFrame API

Transforming and renaming columns using DataFrame APIs

Writing output data back to S3 in CSV format

Querying results using Amazon Athena

🎓 A perfect end-to-end demonstration of a real-world ETL pipeline!

Видео PySpark Tutorial Section 2: PySpark Data Pipeline using AWS: S3, Glue Crawler, Catalog & Athena канала Code for Earth 🌳
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять