Загрузка...

Maria Beatrice Pozzetti - 4/4 An introduction to higher rank Teichmüller theory

The minicourse will focus on discrete subgroups of semisimple Lie groups G isomorphic to fundamental groups $\Gamma$ of surfaces. These typically admit a rich deformation theory and can be parametrized as subset of the character variety $X=Hom(\Gamma, G)/G$. I will first discuss the Anosov condition, describing open subsets of $X$ and then discuss higher rank Teichmüller theories: connected components of $X$ only consisting of discrete and faithful representations. We proved with Beyrer-Guichard-Labourie-Wienhard that for classical groups G these are explained by $\Theta$-positivity, a Lie algebraic framework introduced by Guichard-Wienhard. After introducing this concept I will explain how closedness in the character variety is ultimately due to a collar lemma, generalizing a key geometric feature of hyperbolic surfaces.

Maria Beatrice Pozzetti (Universita di Bologna)

===

Find this and many more scientific videos on https://www.carmin.tv/ - a French video platform for mathematics and their interactions with other sciences offering extra functionalities tailored to meet the needs of the research community.

===

Видео Maria Beatrice Pozzetti - 4/4 An introduction to higher rank Teichmüller theory канала Institut des Hautes Etudes Scientifiques (IHES)
Яндекс.Метрика

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять