Загрузка...

ScaleCap: Detailed & Accurate Image Captions

In this AI Research Roundup episode, Alex discusses the paper:
'ScaleCap: Inference-Time Scalable Image Captioning via Dual-Modality
Debiasing'
ScaleCap is a new inference-time strategy for creating more detailed and accurate image descriptions from Large Vision-Language Models (LVLMs). It tackles key issues like multimodal bias, which leads to uneven descriptions, and linguistic bias, which can cause the model to hallucinate non-existent objects. The method uses a novel Heuristic Question Answering (HQA) process where a powerful LLM asks targeted questions about an image to guide a smaller LVLM into providing more fine-grained details. To combat hallucinations, it also incorporates a Contrastive Sentence Rating (CSR) system. This dual-modality debiasing makes high-quality, scalable captioning possible even with more compact models.
Paper URL: https://huggingface.co/papers/2506.19848

#AI #MachineLearning #DeepLearning #ImageCaptioning #LVLM #ComputerVision #MultimodalAI

Видео ScaleCap: Detailed & Accurate Image Captions канала AI Research Roundup
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять