Grad-CAM Explained | FREE XAI Course | L7 - Gradient-weighted Class Activation Mapping
🚀 Course 🚀
Free: https://adataodyssey.com/xai-for-cv/
Paid: https://adataodyssey.com/courses/xai-for-cv/
Gradient-weighted Class Activation Mapping (Grad-CAM) is an explainable AI (XAI) method that highlights which parts of an image influenced an AI model’s decision. By generating a heatmap, it reveals how convolutional neural networks (CNNs) "see" images, making deep learning models used for medical diagnostics, autonomous driving, and image recognition more transparent and interpretable.
In this lesson, we’ll break down:
✅ The theory behind Grad-CAM
✅ Visualizations and the math behind the method
✅ Intuition on why CAM-based approaches work
✅ Advantages & limitations of Grad-CAM
🚀 Useful playlists 🚀
XAI for CV: https://www.youtube.com/playlist?list=PLqDyyww9y-1QA4-o4tTAF_iD5cKCC1qEA
XAI: https://www.youtube.com/playlist?list=PLqDyyww9y-1SwNZ-6CmvfXDAOdLS7yUQ4
SHAP: https://www.youtube.com/playlist?list=PLqDyyww9y-1SJgMw92x90qPYpHgahDLIK
Algorithm fairness: https://www.youtube.com/playlist?list=PLqDyyww9y-1Q0zWbng6vUOG1p3oReE2xS
🚀 Get in touch 🚀
Medium: https://conorosullyds.medium.com/
Bluesky: https://bsky.app/profile/conorosullyds.bsky.social
Threads: https://www.threads.net/@conorosullyds
Website: https://adataodyssey.com/
🚀 Chapters 🚀
00:00 Introduction
02:07 Theory
06:47 Maths formula
08:08 Intuition
10:36 Advantages and limitations
Видео Grad-CAM Explained | FREE XAI Course | L7 - Gradient-weighted Class Activation Mapping канала A Data Odyssey
Free: https://adataodyssey.com/xai-for-cv/
Paid: https://adataodyssey.com/courses/xai-for-cv/
Gradient-weighted Class Activation Mapping (Grad-CAM) is an explainable AI (XAI) method that highlights which parts of an image influenced an AI model’s decision. By generating a heatmap, it reveals how convolutional neural networks (CNNs) "see" images, making deep learning models used for medical diagnostics, autonomous driving, and image recognition more transparent and interpretable.
In this lesson, we’ll break down:
✅ The theory behind Grad-CAM
✅ Visualizations and the math behind the method
✅ Intuition on why CAM-based approaches work
✅ Advantages & limitations of Grad-CAM
🚀 Useful playlists 🚀
XAI for CV: https://www.youtube.com/playlist?list=PLqDyyww9y-1QA4-o4tTAF_iD5cKCC1qEA
XAI: https://www.youtube.com/playlist?list=PLqDyyww9y-1SwNZ-6CmvfXDAOdLS7yUQ4
SHAP: https://www.youtube.com/playlist?list=PLqDyyww9y-1SJgMw92x90qPYpHgahDLIK
Algorithm fairness: https://www.youtube.com/playlist?list=PLqDyyww9y-1Q0zWbng6vUOG1p3oReE2xS
🚀 Get in touch 🚀
Medium: https://conorosullyds.medium.com/
Bluesky: https://bsky.app/profile/conorosullyds.bsky.social
Threads: https://www.threads.net/@conorosullyds
Website: https://adataodyssey.com/
🚀 Chapters 🚀
00:00 Introduction
02:07 Theory
06:47 Maths formula
08:08 Intuition
10:36 Advantages and limitations
Видео Grad-CAM Explained | FREE XAI Course | L7 - Gradient-weighted Class Activation Mapping канала A Data Odyssey
Комментарии отсутствуют
Информация о видео
31 марта 2025 г. 12:00:23
00:13:37
Другие видео канала