Загрузка страницы

Rachel Shadoff: ...Expanding the Utility of mtDNA Profiles in Forensic Human Identification

Current forensic mitochondrial DNA (mtDNA) profiling captures the control region, a 1.1 kbp segment that contains two hypervariable regions harbouring approximately 30% of all variation present in the mitochondrial genome (mtGenome). Forensic mitochondrial profiles report single nucleotide polymorphisms (SNPs) that are detected in the control region of a sample after comparison against the revised Cambridge Reference Sequence, and samples are assigned to a haplogroup based on the SNPs captured. The use of an incomplete mtDNA profile (i.e., containing only the control region) limits the specificity with which haplogroups can be assigned, in turn limiting the power of discrimination of mtDNA profiles. Whole mtGenome sequencing, however, captures 100% of the genetic variation present in a sample and allows for the assignment of samples to highly specific subclades, reducing the number of individuals that could be the source of the mtDNA profile. This research aims to optimize and validate mtGenome sequencing of challenging sample types such as post-mortem tissue, as it is faster and cheaper to process soft tissue compared to hard tissues, which are commonly used for mtDNA profile generation. Further, the use of mtGenome sequencing expands the utility of mtDNA profiles by increasing a profile’s power of discrimination. Providing a validated whole mtGenome sequencing approach for challenging soft tissue samples will allow laboratories to conduct whole genome sequencing on a wider variety of samples and facilitate a move towards forensic mtDNA profiles that comprise the full mtGenome.

Видео Rachel Shadoff: ...Expanding the Utility of mtDNA Profiles in Forensic Human Identification канала ISHI News
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
18 июля 2022 г. 18:00:17
00:02:47
Яндекс.Метрика