Загрузка страницы

Chaperones | Functions & Types

In molecular biology, molecular chaperones are proteins that assist the covalent folding or unfolding and the assembly or disassembly of other macromolecular structures. Chaperones are present when the macromolecules perform their normal biological functions and have correctly completed the processes of folding and/or assembly. The chaperones are concerned primarily with protein folding. The first protein to be called a chaperone assists the assembly of nucleosomes from folded histones and DNA and such assembly chaperones, especially in the nucleus, are concerned with the assembly of folded subunits into oligomeric structures
One major function of chaperones is to prevent both newly synthesised polypeptide chains and assembled subunits from aggregating into nonfunctional structures. It is for this reason that many chaperones, but by no means all, are HSPs because the tendency to aggregate increases as proteins are denatured by stress. In this case, chaperones do not convey any additional steric information required for proteins to fold. However, some highly specific 'steric chaperones' do convey unique structural (steric) information onto proteins, which cannot be folded spontaneously. Such proteins violate Anfinsen's dogma, requiring protein dynamics to fold correctly.

Many chaperones are heat S proteins, that is, proteins expressed in response to elevated temperatures or other cellular stresses. The reason for this behaviour is that protein folding is severely affected by heat and, therefore, some chaperones act to prevent or correct damage caused by misfolding. Other chaperones are involved in folding newly made proteins as they are extruded from the ribosome. Although most newly synthesized proteins can fold in absence of chaperones, a minority strictly requires them for the same.
Hsp 60 and Hsp 70 are frequently translated for protein foldng.

Some chaperone systems work as foldases: they support the folding of proteins in an ATP-dependent manner (for example, the GroEL/GroES or the DnaK/DnaJ/GrpE system). Other chaperones work as holdases: they bind folding intermediates to prevent their aggregation, for example DnaJ or Hsp33.

In the endoplasmic reticulum (ER) there are general, lectin- and non-classical molecular chaperones helping to fold proteins.

General chaperones: GRP78/BiP, GRP94, GRP170.
Lectin chaperones: calnexin and calreticulin
Non-classical molecular chaperones: HSP47 and ERp29
Folding chaperones:
Protein disulfide isomerase (PDI),
Peptidyl prolyl cis-trans-isomerase (PPI),
ERp57

Видео Chaperones | Functions & Types канала Hussain Biology
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
17 ноября 2017 г. 17:27:57
00:05:58
Яндекс.Метрика