Загрузка страницы

Walter Lewin Biography, awards, education, lifestyle, love, physics, lines, Motivation&NetWorth.

Walter Lewin taught physics in high school while studying for his PhD, then he went to Massachusetts Institute of Technology in January 1966 as a post-doctoral associate, and was appointed an assistant professor. He was promoted to associate professor of physics in 1968 and to full professor in 1974.[7]

At MIT, Lewin joined the X-ray astronomy group and conducted all-sky balloon surveys with George W. Clark. Through the late seventies, there were about twenty successful balloon flights. These balloon surveys led to the discovery of five new X-ray sources, whose spectra were very different from the X-ray sources discovered during rocket observations. The X-ray flux of these sources was variable. Among them was GX 1+4 whose X-ray flux appeared to be periodic with a period of about 2.4 minutes. This was the first discovery of a slowly rotating neutron star.[8]

In October 1967 when Scorpius X-1 was observed, an X-ray flare was detected. The flux went up by a factor of about 4 in ten minutes after which it declined again. This was the first detection of X-ray variability observed during the observations. The rockets used by other researchers could not have discovered that the X-ray sources varied on such short time scales because they were only up for several minutes, whereas the balloons could be in the air for many hours.[9]

Lewin was co-investigator on the Small Astronomy Satellite 3 (SAS-3) project. He directed the burst observations and discovered several X-ray bursters, among them was the rapid burster[10] which can produce thousands of X-ray bursts in one day. His group also discovered that the rapid burster produces two types of bursts and established a classification of bursts as type I (thermonuclear flashes) and type II (accretion flow instabilities).[11]

Lewin was co-principal investigator on High Energy Astronomy Observatory 1 HEAO-1 (A4), which has yielded the first all sky catalog at high-energy X rays. With H. Pedersen and J. van Paradijs, Lewin made extensive studies of optical bursts which are associated with X-ray bursts; for X-ray detections they used SAS-3 and the Japanese observatory "Hakucho". Their combined burst observations demonstrated that the optical bursts are a few seconds delayed relative to the X-ray bursts. This established the size of the accretion disc surrounding the accreting neutron stars.

In his search for millisecond X-ray pulsations from low-mass X-ray binaries, in 1984–85 Lewin made guest observations with the European observatory EXOSAT in collaboration with colleagues from Amsterdam and Garching, Germany. This led to the unexpected discovery of intensity-dependent quasi-periodic oscillations (QPO) in the X-ray flux of GX 5-1. During 1989 to 1992, using the Japanese observatory "Ginga", Lewin and his co-workers studied the relation between the X-ray spectral state and the radio brightness of several bright low-mass X-ray binaries.[12]

Lewin was closely involved in ROSAT observations of the nearby galaxies M31 and Messier 81. Lewin and his graduate student Eugene Magnier have made deep optical charge-coupled device observations of M31 in four colors; they have published a catalogue of 500,000 objects. Lewin and his graduate student David Pooley initiated the successful X-ray observations within six days of the appearance of supernova SN 1993J in M81.

Lewin collaborated with his close friend Jan van Paradijs of the University of Amsterdam from 1978 until van Paradijs' death. They co-authored 150 papers.[13]

He became a corresponding member of the Royal Netherlands Academy of Arts and Sciences in 1993[14] and a fellow of the American Physical Society in 1993.[15]

Lewin and graduate student Jeffrey Kommers have worked on data from the Compton Gamma Ray Observatory (GRO). This was a collaboration with the BATSE Group[16] in Huntsville, AL. In early December 1995, with co-workers Chryssa Kouveliotou and Van Paradijs, they discovered a new type of X-ray burst source: (GRO J1744-28) the Bursting Pulsar, and received a NASA Achievement Award for this discovery.

In 1996–1998, Lewin's collaboration with Michiel van der Klis in Amsterdam led to the discovery of kHz oscillations in many X-ray binaries.

Using the Chandra X-ray Observatory, Lewin and his graduate student David Pooley made extensive studies of supernovae and faint X-ray sources in globular clusters. This research was done in collaboration with scientists from the University of Washington, IAS in Princeton, UC Berkeley, the University of Amsterdam and Utrecht in The Netherlands, and the Naval Research Laboratory in Washington, DC. The research on supernovae produced the first X-ray spectrum with unprecedented energy resolution of SN 1989S.[17] The research on globular clusters demonstrated that X-ray binary stars are cooked in the cores of the clusters where the stellar density is very high.

Видео Walter Lewin Biography, awards, education, lifestyle, love, physics, lines, Motivation&NetWorth. канала Craving for Science and Technology
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
14 ноября 2020 г. 17:22:06
00:09:07
Яндекс.Метрика