Загрузка страницы

Single-Layer Perceptron: Background & Python Code

In this video we'll introduce the Single-Layer Perceptron (aka "Neuron" or simply "Perceptron"), the most fundamental element of nearly all modern neural network and machine learning models. We'll begin by covering the history and main idea, then open up a coding editor and actually implement the element from scratch.

Machine Learning textbook (mentioned in video): http://www.deeplearningbook.org/

Github repo: https://github.com/bfaure/AI_Project_4/blob/master/Question_4/main.py

If you'd like to learn about Python data structures, check out my video series starting with: https://www.youtube.com/watch?v=TW_e9FFEDeY

Video series covering GUI development in Python: https://www.youtube.com/watch?v=IpTG4KixVew

References:

[1] - https://en.wikipedia.org/wiki/Perceptron

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers (functions that can decide whether an input, represented by a vector of numbers, belongs to some specific class or not). It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that it processes elements in the training set one at a time.

Видео Single-Layer Perceptron: Background & Python Code канала Brian Faure
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
15 сентября 2017 г. 5:05:14
00:18:41
Яндекс.Метрика