Загрузка...

Retail Demand Forecasting AI Assistant | Hackathon Demo by Anik Dwivedi & Ketan Agrawal

In this demo, Anik Dwivedi and Ketan Agrawal present an intelligent retail demand forecasting assistant built for the Hackathon 2025.

💡 What does it do?
Forecasts product demand using Prophet, LightGBM & XGBoost
Provides natural language insights using Groq's LLaMA 3 model
Integrates real weather data to uncover demand drivers
Simulates promotions and suggests inventory/staffing strategies
Empowers store managers with actionable decisions in plain English

🛠️ Built with:
Python & Streamlit
Facebook Prophet, XGBoost, LightGBM
Groq LLM API (LLaMA 3)
Open-Meteo Weather API

🎯 No more static dashboards — this is an AI-native assistant that turns retail data into real-world actions.

▶️ Watch the full demo and see how we bring intelligence to retail operations.

#RetailForecasting #Hackathon2025 #AIinRetail #Prophet #Streamlit #GroqLLM #MachineLearning #KetanAgrawal #AnikDwivedi #RetailAI #XGBoost #LightGBM #DataScience

Видео Retail Demand Forecasting AI Assistant | Hackathon Demo by Anik Dwivedi & Ketan Agrawal канала Ketan Agrawal
Яндекс.Метрика

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять