Lec 17.Multiple Integrals| Region of Integration Bounded by Sphere x²+y²+z²=a²| Part 5 | Ashish Sir
Here,We have Solved Numerical 7 and 8 Based on
Region of Integration Bounded by Sphere
I,e Evaluate Triple Integration over the Volume Of Sphere enclosed by
i) x²+y²+z²=16 and x²+y²+z²=25
ii) x²+y²+z²=a² and x²+y²+z²=b²
Always Remember📝
Cartesian to Spherical coordinate For Given Integral
I,e
x=rsinθcosΦ
y=rsinθsinΦ
z=rcosθ
dxdydx=rdrdθdΦ
x²+y²+z²=r²
For Octant of Sphere
Limits
r = 0 to a
θ= 0 to π/2
Φ= 0 to π/2
For Whole Sphere
Multiply Above integral by 8
For Hemisphere
Multiply Above integral by 4
👉Multiple Integration|Triple Integration| Applied mathematics 2: https://www.youtube.com/playlist?list=PLyfhS7Ft-HyPXja7yFQjjpkB0OqQPAElh
👉Multiple Integration| Double Integration| Applied mathematics 2: https://www.youtube.com/playlist?list=PLyfhS7Ft-HyPf-WWGayyYDn96ex1Cg5jf
👉Complete Playlist of Beta And Gamma Functions Chapter
https://youtube.com/playlist?list=PLyfhS7Ft-HyN2thDXmQviam92EOuLdoY8&si=8UkSorz5Fu4n4tc1
👉For Detail Differentiation and Integration Formula's https://www.youtube.com/playlist?list=PLyfhS7Ft-HyOIKSmwIQ0Oxg4KE65p0FHZ
For Doubt/Offline Class Enquiry
WhatsApp:- 8286798454
Do Share our Videos to needy one🙏
Download our Friends Academy Application From Google Playstore
https://qoluad.on-app.in/app/home?orgCode=qoluad
#regionofintegrations
#multipleintegrals
#doubleintegrals
#doubleintegration
#tripleintegral
#tripleintegrations
#friendsacademy
#betaandgammafunctions
#mumbaiuniversityexamnews
#engineeringmathematics
#engineeringcourse
#indefiniteintegrationclass12
#appliedmathematics2
#bscmaths
#1styearmath
#evaluation
Видео Lec 17.Multiple Integrals| Region of Integration Bounded by Sphere x²+y²+z²=a²| Part 5 | Ashish Sir канала FRIENDS ACADEMY
Region of Integration Bounded by Sphere
I,e Evaluate Triple Integration over the Volume Of Sphere enclosed by
i) x²+y²+z²=16 and x²+y²+z²=25
ii) x²+y²+z²=a² and x²+y²+z²=b²
Always Remember📝
Cartesian to Spherical coordinate For Given Integral
I,e
x=rsinθcosΦ
y=rsinθsinΦ
z=rcosθ
dxdydx=rdrdθdΦ
x²+y²+z²=r²
For Octant of Sphere
Limits
r = 0 to a
θ= 0 to π/2
Φ= 0 to π/2
For Whole Sphere
Multiply Above integral by 8
For Hemisphere
Multiply Above integral by 4
👉Multiple Integration|Triple Integration| Applied mathematics 2: https://www.youtube.com/playlist?list=PLyfhS7Ft-HyPXja7yFQjjpkB0OqQPAElh
👉Multiple Integration| Double Integration| Applied mathematics 2: https://www.youtube.com/playlist?list=PLyfhS7Ft-HyPf-WWGayyYDn96ex1Cg5jf
👉Complete Playlist of Beta And Gamma Functions Chapter
https://youtube.com/playlist?list=PLyfhS7Ft-HyN2thDXmQviam92EOuLdoY8&si=8UkSorz5Fu4n4tc1
👉For Detail Differentiation and Integration Formula's https://www.youtube.com/playlist?list=PLyfhS7Ft-HyOIKSmwIQ0Oxg4KE65p0FHZ
For Doubt/Offline Class Enquiry
WhatsApp:- 8286798454
Do Share our Videos to needy one🙏
Download our Friends Academy Application From Google Playstore
https://qoluad.on-app.in/app/home?orgCode=qoluad
#regionofintegrations
#multipleintegrals
#doubleintegrals
#doubleintegration
#tripleintegral
#tripleintegrations
#friendsacademy
#betaandgammafunctions
#mumbaiuniversityexamnews
#engineeringmathematics
#engineeringcourse
#indefiniteintegrationclass12
#appliedmathematics2
#bscmaths
#1styearmath
#evaluation
Видео Lec 17.Multiple Integrals| Region of Integration Bounded by Sphere x²+y²+z²=a²| Part 5 | Ashish Sir канала FRIENDS ACADEMY
triple integration engineering mathematics 2 triple integration engineering mathematics 2 pradeep giri multiple integrals engineering mathematics btech 1st year multiple integration 2 engineering mathematics 2 triple integration 2 engineering mathematics 2 evaluate the triple integration over the volume of tetrahedron region of integration bounded by planes region of integration bounded by sphere bsc 1st year region of integration engineering mathematics
Комментарии отсутствуют
Информация о видео
13 июня 2025 г. 17:30:07
00:19:33
Другие видео канала