LangChain versus LangGraph
📹 VIDEO TITLE 📹
LangChain versus LangGraph
✍️VIDEO DESCRIPTION ✍️
In this video, we dive into the key differences between LangChain and LangGraph, two popular frameworks for building AI-powered workflows and pipelines. Whether you're working on a simple task automation or a complex AI workflow, understanding these frameworks' strengths and limitations is crucial. LangChain excels at linear task pipelines with minimal setup and a rich ecosystem of integrations, making it perfect for quick prototyping and straightforward use cases. On the other hand, LangGraph shines in managing complex, scalable workflows with its graph-based approach, offering unparalleled flexibility, explicit state management, and support for branching and cyclic dependencies.
We explore practical examples to highlight when you might choose one framework over the other. For instance, if you're creating a chatbot with simple sequential steps, LangChain's simplicity and ease of use are unmatched. However, if your project involves complex workflows with multiple branching paths, reusable nodes, or requires tracking intermediate results, LangGraph's graph-based architecture and customizable state management make it the better choice. We also discuss community support, learning curves, and how each framework aligns with specific project goals.
By the end of this video, you'll have a clear understanding of which framework is best for your specific use case. Whether you're a developer prototyping AI applications or building scalable, production-ready systems, this comparison will help you choose the right tool for the job. Don't forget to like, subscribe, and comment below to share your experience with LangChain and LangGraph!
🧑💻GITHUB URL 🧑💻
No code samples for this video
📽OTHER NEW MACHINA VIDEOS REFERENCED IN THIS VIDEO 📽
What is the Perceptron? - https://youtu.be/UeKxO-Sk0wE
What is the MP Neuron? - https://youtu.be/MBSHhsvaTjs
What is Physical AI ? - https://youtu.be/Xya21TpCog0
What is the Turing Test ? - https://youtu.be/wXMLF54AUwU
What is LLM Alignment ? - https://youtu.be/nYX73hSDEqo
What are Agentic Workflows? - https://youtu.be/CwLAtLyFiTM
Why is AI going Nuclear? - https://youtu.be/eFYy1UYzdZg
What is Synthetic Data? - https://youtu.be/34n9DxFqFc0
What is NLP? - https://youtu.be/C528qW0Zr8k
What is Open Router? - https://youtu.be/pfT6l0yMsB0
What is Sentiment Analysis? - https://youtu.be/hkmAuBWhiXs
What is Mojo ? - https://youtu.be/5uqEPn3DQl8
SDK(s) in Pinecone Vector DB - https://youtu.be/ttnPUbiLjv0
Pinecone Vector DB POD(s) vs Serverless - https://youtu.be/t7qpxjTTccc
Meta Data Filters in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Namespaces in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Fetches & Queries in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Upserts & Deletes in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
What is a Pineconde Index - https://youtu.be/IHm0-WBELTI
What is the Pinecone Vector DB - https://youtu.be/IHm0-WBELTI
What is LLM LangGraph ? - https://youtu.be/w4U3gG_C4VY
AWS Lambda + Anthropic Claude - https://youtu.be/WaxYMhNsCAk
What is Llama Index ? - https://youtu.be/vz3Z2XETpGM
LangChain HelloWorld with Open GPT 3.5 - https://youtu.be/tD335RLNYJQ
Forget about LLMs What About SLMs - https://youtu.be/Pn7a35dQq2s
What are LLM Presence and Frequency Penalties? - https://youtu.be/J66CRz6s734
What are LLM Hallucinations ? - https://youtu.be/4xmMj6UPIb4
Can LLMs Reason over Large Inputs ? - https://youtu.be/nCVjjXPIrxc
What is the LLM’s Context Window? - https://youtu.be/y5wBbDSe0cM
What is LLM Chain of Thought Prompting? - https://youtu.be/Lwn88e17u4k
Algorithms for Search Similarity - https://youtu.be/jaJd9IFlVCA
How LLMs use Vector Databases - https://youtu.be/1GT6ctTyXFo
What are LLM Embeddings ? - https://youtu.be/UShw_1NbpCw
How LLM’s are Driven by Vectors - https://youtu.be/Yl_ebS_jWZM
What is 0, 1, and Few Shot LLM Prompting ? - https://youtu.be/ckQPDM-97dM
What are the LLM’s Top-P and TopK ? - https://youtu.be/aDmp2Uim0zQ
What is the LLM’s Temperature ? - https://youtu.be/_YTnZOYxSjE
What is LLM Prompt Engineering ? - https://youtu.be/s_8Ba_UJkcA
What is LLM Tokenization? - https://youtu.be/q77s1gurXYU
What is the LangChain Framework? - https://youtu.be/dS5H-bjItqE
CoPilots vs AI Agents - https://youtu.be/zogst5DpBt4
What is an AI PC ? - https://youtu.be/yTgy11yPy78
What are AI HyperScalers? - https://youtu.be/YH9b7-BfSjQ
What is LLM Fine-Tuning ? - https://youtu.be/D-1Bk-NxiBI
What is LLM Pre-Training? - https://youtu.be/P7emqEtkiSk
AI ML Training versus Inference - https://youtu.be/lsPucobtdDk
What is meant by AI ML Model Training Corpus? - https://youtu.be/f0s2D-XvNbo
What is AI LLM Multi-Modality? - https://youtu.be/8rr8jKKt7q4
What is an LLM ? - https://youtu.be/pMZd3wLabTk
Predictive versus Generative AI ? - https://youtu.be/70EiOHDUBus
🔠KEYWORDS 🔠
#langchain
#langgraph
#DAG
#LLM
Видео LangChain versus LangGraph канала New Machina
LangChain versus LangGraph
✍️VIDEO DESCRIPTION ✍️
In this video, we dive into the key differences between LangChain and LangGraph, two popular frameworks for building AI-powered workflows and pipelines. Whether you're working on a simple task automation or a complex AI workflow, understanding these frameworks' strengths and limitations is crucial. LangChain excels at linear task pipelines with minimal setup and a rich ecosystem of integrations, making it perfect for quick prototyping and straightforward use cases. On the other hand, LangGraph shines in managing complex, scalable workflows with its graph-based approach, offering unparalleled flexibility, explicit state management, and support for branching and cyclic dependencies.
We explore practical examples to highlight when you might choose one framework over the other. For instance, if you're creating a chatbot with simple sequential steps, LangChain's simplicity and ease of use are unmatched. However, if your project involves complex workflows with multiple branching paths, reusable nodes, or requires tracking intermediate results, LangGraph's graph-based architecture and customizable state management make it the better choice. We also discuss community support, learning curves, and how each framework aligns with specific project goals.
By the end of this video, you'll have a clear understanding of which framework is best for your specific use case. Whether you're a developer prototyping AI applications or building scalable, production-ready systems, this comparison will help you choose the right tool for the job. Don't forget to like, subscribe, and comment below to share your experience with LangChain and LangGraph!
🧑💻GITHUB URL 🧑💻
No code samples for this video
📽OTHER NEW MACHINA VIDEOS REFERENCED IN THIS VIDEO 📽
What is the Perceptron? - https://youtu.be/UeKxO-Sk0wE
What is the MP Neuron? - https://youtu.be/MBSHhsvaTjs
What is Physical AI ? - https://youtu.be/Xya21TpCog0
What is the Turing Test ? - https://youtu.be/wXMLF54AUwU
What is LLM Alignment ? - https://youtu.be/nYX73hSDEqo
What are Agentic Workflows? - https://youtu.be/CwLAtLyFiTM
Why is AI going Nuclear? - https://youtu.be/eFYy1UYzdZg
What is Synthetic Data? - https://youtu.be/34n9DxFqFc0
What is NLP? - https://youtu.be/C528qW0Zr8k
What is Open Router? - https://youtu.be/pfT6l0yMsB0
What is Sentiment Analysis? - https://youtu.be/hkmAuBWhiXs
What is Mojo ? - https://youtu.be/5uqEPn3DQl8
SDK(s) in Pinecone Vector DB - https://youtu.be/ttnPUbiLjv0
Pinecone Vector DB POD(s) vs Serverless - https://youtu.be/t7qpxjTTccc
Meta Data Filters in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Namespaces in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Fetches & Queries in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Upserts & Deletes in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
What is a Pineconde Index - https://youtu.be/IHm0-WBELTI
What is the Pinecone Vector DB - https://youtu.be/IHm0-WBELTI
What is LLM LangGraph ? - https://youtu.be/w4U3gG_C4VY
AWS Lambda + Anthropic Claude - https://youtu.be/WaxYMhNsCAk
What is Llama Index ? - https://youtu.be/vz3Z2XETpGM
LangChain HelloWorld with Open GPT 3.5 - https://youtu.be/tD335RLNYJQ
Forget about LLMs What About SLMs - https://youtu.be/Pn7a35dQq2s
What are LLM Presence and Frequency Penalties? - https://youtu.be/J66CRz6s734
What are LLM Hallucinations ? - https://youtu.be/4xmMj6UPIb4
Can LLMs Reason over Large Inputs ? - https://youtu.be/nCVjjXPIrxc
What is the LLM’s Context Window? - https://youtu.be/y5wBbDSe0cM
What is LLM Chain of Thought Prompting? - https://youtu.be/Lwn88e17u4k
Algorithms for Search Similarity - https://youtu.be/jaJd9IFlVCA
How LLMs use Vector Databases - https://youtu.be/1GT6ctTyXFo
What are LLM Embeddings ? - https://youtu.be/UShw_1NbpCw
How LLM’s are Driven by Vectors - https://youtu.be/Yl_ebS_jWZM
What is 0, 1, and Few Shot LLM Prompting ? - https://youtu.be/ckQPDM-97dM
What are the LLM’s Top-P and TopK ? - https://youtu.be/aDmp2Uim0zQ
What is the LLM’s Temperature ? - https://youtu.be/_YTnZOYxSjE
What is LLM Prompt Engineering ? - https://youtu.be/s_8Ba_UJkcA
What is LLM Tokenization? - https://youtu.be/q77s1gurXYU
What is the LangChain Framework? - https://youtu.be/dS5H-bjItqE
CoPilots vs AI Agents - https://youtu.be/zogst5DpBt4
What is an AI PC ? - https://youtu.be/yTgy11yPy78
What are AI HyperScalers? - https://youtu.be/YH9b7-BfSjQ
What is LLM Fine-Tuning ? - https://youtu.be/D-1Bk-NxiBI
What is LLM Pre-Training? - https://youtu.be/P7emqEtkiSk
AI ML Training versus Inference - https://youtu.be/lsPucobtdDk
What is meant by AI ML Model Training Corpus? - https://youtu.be/f0s2D-XvNbo
What is AI LLM Multi-Modality? - https://youtu.be/8rr8jKKt7q4
What is an LLM ? - https://youtu.be/pMZd3wLabTk
Predictive versus Generative AI ? - https://youtu.be/70EiOHDUBus
🔠KEYWORDS 🔠
#langchain
#langgraph
#DAG
#LLM
Видео LangChain versus LangGraph канала New Machina
Комментарии отсутствуют
Информация о видео
19 января 2025 г. 23:00:19
00:08:14
Другие видео канала