- Популярные видео
- Авто
- Видео-блоги
- ДТП, аварии
- Для маленьких
- Еда, напитки
- Животные
- Закон и право
- Знаменитости
- Игры
- Искусство
- Комедии
- Красота, мода
- Кулинария, рецепты
- Люди
- Мото
- Музыка
- Мультфильмы
- Наука, технологии
- Новости
- Образование
- Политика
- Праздники
- Приколы
- Природа
- Происшествия
- Путешествия
- Развлечения
- Ржач
- Семья
- Сериалы
- Спорт
- Стиль жизни
- ТВ передачи
- Танцы
- Технологии
- Товары
- Ужасы
- Фильмы
- Шоу-бизнес
- Юмор
Titanic Kaggle Data Science Project - Beginners Walkthrough Code Along with Me
🚢 Predict Titanic Survival with Machine Learning | Full Kaggle Walkthrough (Python + Sklearn)
In this video, we walk through a complete machine learning project using the Titanic dataset from Kaggle. From exploring the data to building predictive models and generating a submission file — this is everything you need to get started with real-world data science in Python.
📘 What You’ll Learn:
- How to load and explore real datasets
- Handling missing data and null value inspection
- Feature engineering (e.g., extracting titles from names)
- Encoding categorical variables
- Building and evaluating models (Logistic Regression + Random Forest)
- Visualizing feature importance
- Creating a Kaggle-ready submission file
🔗 Resources: 👉 Kaggle Titanic Competition: https://www.kaggle.com/competitions/titanic
👉 GitHub Repo: https://github.com/madams239/titanic/blob/main/README.md
👉 Notebook & Code: Included in the GitHub repo
👉 Requirements.txt: Included for easy setup
📈 Whether you're a beginner looking to build your first machine learning model, or prepping for data science interviews, this project is a must-have in your portfolio.
Chapters: 0:00 - Intro
1:15 - Environment Setup
10:30 - Exploratory Data Analysis
20:13 - Feature Engineering
33:30 - Training Models
36:04 - Model Evaluation + Random Forest Model
42:04 - Cross Validation
👍 If you found this helpful, don’t forget to like, subscribe, and drop a comment letting me know what project you’d like to see next!
43:24 - Closing
Follow me on other platforms here
https://linktr.ee/thedataguymichael
🔗 Stay connected + get the latest AI tools:
https://linktr.ee/thedataguymichael
🎙️ My mic setup (clean, crisp, no echo):
Microphone - https://amzn.to/4idM9kM
Microphone Arm - https://amzn.to/42EXo02
🎧 These are my daily drivers — insane audio and comfort: https://amzn.to/4ctzXLk
🎤 My go-to headset for Zooms and deep focus: https://amzn.to/4jbhIgw
💻 If you want a laptop that can handle coding, AI, video editing and still be portable, this is the one I use every day: https://amzn.to/3G9d4AY
🍎If you prefer Apple - https://amzn.to/4jpPQok
💦 I stay hydrated with endless sparkling water, thanks to this: https://amzn.to/3RN8mv4
#MachineLearning #Python #TitanicDataset #Kaggle #DataScience #RandomForest #scikitLearn #TitanicML
Видео Titanic Kaggle Data Science Project - Beginners Walkthrough Code Along with Me канала Data Guy Michael
In this video, we walk through a complete machine learning project using the Titanic dataset from Kaggle. From exploring the data to building predictive models and generating a submission file — this is everything you need to get started with real-world data science in Python.
📘 What You’ll Learn:
- How to load and explore real datasets
- Handling missing data and null value inspection
- Feature engineering (e.g., extracting titles from names)
- Encoding categorical variables
- Building and evaluating models (Logistic Regression + Random Forest)
- Visualizing feature importance
- Creating a Kaggle-ready submission file
🔗 Resources: 👉 Kaggle Titanic Competition: https://www.kaggle.com/competitions/titanic
👉 GitHub Repo: https://github.com/madams239/titanic/blob/main/README.md
👉 Notebook & Code: Included in the GitHub repo
👉 Requirements.txt: Included for easy setup
📈 Whether you're a beginner looking to build your first machine learning model, or prepping for data science interviews, this project is a must-have in your portfolio.
Chapters: 0:00 - Intro
1:15 - Environment Setup
10:30 - Exploratory Data Analysis
20:13 - Feature Engineering
33:30 - Training Models
36:04 - Model Evaluation + Random Forest Model
42:04 - Cross Validation
👍 If you found this helpful, don’t forget to like, subscribe, and drop a comment letting me know what project you’d like to see next!
43:24 - Closing
Follow me on other platforms here
https://linktr.ee/thedataguymichael
🔗 Stay connected + get the latest AI tools:
https://linktr.ee/thedataguymichael
🎙️ My mic setup (clean, crisp, no echo):
Microphone - https://amzn.to/4idM9kM
Microphone Arm - https://amzn.to/42EXo02
🎧 These are my daily drivers — insane audio and comfort: https://amzn.to/4ctzXLk
🎤 My go-to headset for Zooms and deep focus: https://amzn.to/4jbhIgw
💻 If you want a laptop that can handle coding, AI, video editing and still be portable, this is the one I use every day: https://amzn.to/3G9d4AY
🍎If you prefer Apple - https://amzn.to/4jpPQok
💦 I stay hydrated with endless sparkling water, thanks to this: https://amzn.to/3RN8mv4
#MachineLearning #Python #TitanicDataset #Kaggle #DataScience #RandomForest #scikitLearn #TitanicML
Видео Titanic Kaggle Data Science Project - Beginners Walkthrough Code Along with Me канала Data Guy Michael
Комментарии отсутствуют
Информация о видео
13 апреля 2025 г. 5:01:01
00:47:03
Другие видео канала