Загрузка...

Master MLOps: Deploy ML Models on Kubernetes with KServe, MLServer & MLFlow!

Welcome to our comprehensive tutorial on deploying machine learning models in a Kubernetes environment!

In this video, we'll guide you through the entire MLOps process, focusing on powerful tools like KServe, MLServer, and MLFlow.

🚀 What You'll Learn:

- Introduction to MLOps and its importance (Watch Previous Videos)
- Setting up your Kubernetes cluster for ML deployment (Watch Previous Videos)
- Step-by-step deployment of ML models using KServe and MLServer
- Managing model versions and experiments with MLFlow
- Best practices for scaling and monitoring your ML applications

Whether you’re a data scientist looking to streamline your model deployment or a DevOps engineer wanting to integrate ML into your workflows, this video is packed with valuable insights and practical demonstrations.

👉 Don’t forget to subscribe for more MLOps tutorials and hit the bell icon for updates!

📚 Resources:

KServe Documentation: [https://kserve.github.io/website/latest/get_started/]
MLServer Documentation: [https://github.com/SeldonIO/MLServer]
MLFlow Documentation: [https://mlflow.org/docs/latest/deployment/deploy-model-to-kubernetes/tutorial.html]

🔗 Join our community! Follow us on Linkedin@mayur-mle, X@pythonynm and share your thoughts in the comments below!

#MLOps #Kubernetes #KServe #MLServer #MLFlow #MachineLearning #DataScience #TechTutorial

Видео Master MLOps: Deploy ML Models on Kubernetes with KServe, MLServer & MLFlow! канала MLWorks
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять