Загрузка...

Scaling Data Engineering Pipelines: Preparing Credit Card Transactions Data for Machine Learning

We discuss two real-world use cases in big data engineering, focusing on constructing stable pipelines and managing storage at a petabyte scale. The first use case highlights the implementation of Delta Lake to optimize data pipelines, resulting in an 80% reduction in query time and a 70% reduction in storage space. The second use case demonstrates the effectiveness of the Workflows ‘ForEach’ operator in executing compute-intensive pipelines across multiple clusters, significantly reducing processing time from months to days. This approach involves a reusable design pattern that isolates notebooks into units of work, enabling data scientists to independently test and develop.

Talk By: Brandon DeShon, Director, Data Scientist, Mastercard ; Luke Garzia, Lead Data Engineer, Mastercard

Here’s more to explore:
Production ready data pipelines for analytics and AI: https://www.databricks.com/solutions/data-engineering
The Big Book of Data Engineering: https://www.databricks.com/resources/ebook/big-book-data-engineering-2nd-edition
See all the product announcements from Data + AI Summit: https://www.databricks.com/events/dataaisummit-2025-announcements

Connect with us: Website: https://databricks.com
Twitter: https://twitter.com/databricks
LinkedIn: https://www.linkedin.com/company/databricks
Instagram: https://www.instagram.com/databricksinc
Facebook: https://www.facebook.com/databricksinc

Видео Scaling Data Engineering Pipelines: Preparing Credit Card Transactions Data for Machine Learning канала Databricks
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять