Загрузка...

How to build a project in SmartInternz/step by step guide in telugu

contact me in Linkedin: www.linkedin.com/in/edara-manikanta

creating video:https://youtu.be/nBXZ-gHn0z4?si=-6i5Ai2JrsRBgUF8
Deep Learning code:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, Input
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam

IMAGE_SIZE = (224, 224)
BATCH_SIZE = 32
EPOCHS = 10

TRAIN_DIR = "paste your url"
VALID_DIR = "paste your url"

# Data Generators
train_gen = ImageDataGenerator(rescale=1./255)
val_gen = ImageDataGenerator(rescale=1./255)

train_data = train_gen.flow_from_directory(
TRAIN_DIR,
target_size=IMAGE_SIZE,
batch_size=BATCH_SIZE,
class_mode='categorical'
)

val_data = val_gen.flow_from_directory(
VALID_DIR,
target_size=IMAGE_SIZE,
batch_size=BATCH_SIZE,
class_mode='categorical'
)

# Number of classes
num_classes = len(train_data.class_indices)

# Model
model = Sequential([
Input(shape=(224, 224, 3)),
Conv2D(32, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(num_classes, activation='softmax')
])

model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])

# Train the model
model.fit(train_data, validation_data=val_data, epochs=EPOCHS)

# Save as .h5
model.save("your_model_name.h5")
print("✅ your_model_name.h5 saved!")

Видео How to build a project in SmartInternz/step by step guide in telugu канала Mani Tech
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять