🚀3D Arrays: Structure, Memory Representation, and Applications 🚀 || jitvns
What is a 3D Array?
A 3D array is an extension of a 2D array, where each element is a 2D matrix. It stores data in three dimensions:
📌 Structure: A[L][M][N]
🔹 L → Number of planes (depth) 📦
🔹 M → Number of rows 📏
🔹 N → Number of columns 📊
📌 Accessing Elements: A[i][j][k]
i → Plane index 🌍
j → Row index 📏
k → Column index 📊
🖥️ Memory Representation
Stored in row-major or column-major order:
🔹 Row-Major Order: 📥 Rows first, then columns, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑖
×
𝑀
×
𝑁
)
+
(
𝑗
×
𝑁
)
+
𝑘
]
×
size
Address(A[i][j][k])=BA+[(i×M×N)+(j×N)+k]×size
🔹 Column-Major Order: 📥 Columns first, then rows, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑘
×
𝐿
×
𝑀
)
+
(
𝑗
×
𝐿
)
+
𝑖
]
×
size
Address(A[i][j][k])=BA+[(k×L×M)+(j×L)+i]×size
🔥 Applications of 3D Arrays
✅ Graphics & Image Processing 🎨 (RGB colors)
✅ Game Development 🎮 (3D environments)
✅ Machine Learning 🤖 (Tensor data storage)
✅ Scientific Computation 🧪 (Multidimensional data)
🚀 Understanding 3D arrays is key for Data Structures & GATE CS! 🔥📌 What is a 3D Array?
A 3D array is an extension of a 2D array, where each element is a 2D matrix. It stores data in three dimensions:
📌 Structure: A[L][M][N]
🔹 L → Number of planes (depth) 📦
🔹 M → Number of rows 📏
🔹 N → Number of columns 📊
📌 Accessing Elements: A[i][j][k]
i → Plane index 🌍
j → Row index 📏
k → Column index 📊
🖥️ Memory Representation
Stored in row-major or column-major order:
🔹 Row-Major Order: 📥 Rows first, then columns, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑖
×
𝑀
×
𝑁
)
+
(
𝑗
×
𝑁
)
+
𝑘
]
×
size
Address(A[i][j][k])=BA+[(i×M×N)+(j×N)+k]×size
🔹 Column-Major Order: 📥 Columns first, then rows, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑘
×
𝐿
×
𝑀
)
+
(
𝑗
×
𝐿
)
+
𝑖
]
×
size
Address(A[i][j][k])=BA+[(k×L×M)+(j×L)+i]×size
🔥 Applications of 3D Arrays
✅ Graphics & Image Processing 🎨 (RGB colors)
✅ Game Development 🎮 (3D environments)
✅ Machine Learning 🤖 (Tensor data storage)
✅ Scientific Computation 🧪 (Multidimensional data)
Applications of 3D Arrays:
✅ Graphics & Image Processing (storing RGB color values)
✅ Game Development (handling 3D environments
🚀 Understanding 3D arrays is key for Data Structures & GATE CS! 🔥
Видео 🚀3D Arrays: Structure, Memory Representation, and Applications 🚀 || jitvns канала JITVNS - Tech & Learning
A 3D array is an extension of a 2D array, where each element is a 2D matrix. It stores data in three dimensions:
📌 Structure: A[L][M][N]
🔹 L → Number of planes (depth) 📦
🔹 M → Number of rows 📏
🔹 N → Number of columns 📊
📌 Accessing Elements: A[i][j][k]
i → Plane index 🌍
j → Row index 📏
k → Column index 📊
🖥️ Memory Representation
Stored in row-major or column-major order:
🔹 Row-Major Order: 📥 Rows first, then columns, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑖
×
𝑀
×
𝑁
)
+
(
𝑗
×
𝑁
)
+
𝑘
]
×
size
Address(A[i][j][k])=BA+[(i×M×N)+(j×N)+k]×size
🔹 Column-Major Order: 📥 Columns first, then rows, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑘
×
𝐿
×
𝑀
)
+
(
𝑗
×
𝐿
)
+
𝑖
]
×
size
Address(A[i][j][k])=BA+[(k×L×M)+(j×L)+i]×size
🔥 Applications of 3D Arrays
✅ Graphics & Image Processing 🎨 (RGB colors)
✅ Game Development 🎮 (3D environments)
✅ Machine Learning 🤖 (Tensor data storage)
✅ Scientific Computation 🧪 (Multidimensional data)
🚀 Understanding 3D arrays is key for Data Structures & GATE CS! 🔥📌 What is a 3D Array?
A 3D array is an extension of a 2D array, where each element is a 2D matrix. It stores data in three dimensions:
📌 Structure: A[L][M][N]
🔹 L → Number of planes (depth) 📦
🔹 M → Number of rows 📏
🔹 N → Number of columns 📊
📌 Accessing Elements: A[i][j][k]
i → Plane index 🌍
j → Row index 📏
k → Column index 📊
🖥️ Memory Representation
Stored in row-major or column-major order:
🔹 Row-Major Order: 📥 Rows first, then columns, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑖
×
𝑀
×
𝑁
)
+
(
𝑗
×
𝑁
)
+
𝑘
]
×
size
Address(A[i][j][k])=BA+[(i×M×N)+(j×N)+k]×size
🔹 Column-Major Order: 📥 Columns first, then rows, then depth
Address
(
𝐴
[
𝑖
]
[
𝑗
]
[
𝑘
]
)
=
𝐵
𝐴
+
[
(
𝑘
×
𝐿
×
𝑀
)
+
(
𝑗
×
𝐿
)
+
𝑖
]
×
size
Address(A[i][j][k])=BA+[(k×L×M)+(j×L)+i]×size
🔥 Applications of 3D Arrays
✅ Graphics & Image Processing 🎨 (RGB colors)
✅ Game Development 🎮 (3D environments)
✅ Machine Learning 🤖 (Tensor data storage)
✅ Scientific Computation 🧪 (Multidimensional data)
Applications of 3D Arrays:
✅ Graphics & Image Processing (storing RGB color values)
✅ Game Development (handling 3D environments
🚀 Understanding 3D arrays is key for Data Structures & GATE CS! 🔥
Видео 🚀3D Arrays: Structure, Memory Representation, and Applications 🚀 || jitvns канала JITVNS - Tech & Learning
dbms database conflict serializable gate gatecse gatecse2025 gate2026 serial schedule conflict avl treee maximum height maximum height k gate cse cse treeess avltrees height max height trick short trick short trick for maximum height in avl trees data structure isro pyq isro pyq gate pyq 1D array base address calculation array list calculation of base address calculation of element relative address contiguos memory allocation index allocation
Комментарии отсутствуют
Информация о видео
15 февраля 2025 г. 0:22:50
00:14:00
Другие видео канала